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Preface
Bioinformatics is the management and analysis of data for the life sciences. As such, 

it is inherently interdisciplinary, drawing on techniques from Computer Science, Sta-
tistics, and Mathematics and bringing them to bear on problems in Biology. Moreover, 
its subject matter is as broad as Biology itself. Users and developers of Bioinformatics 
methods come from all of these fields. Molecular biologists are some of the major 
users of Bioinformatics, but its techniques are applicable across a range of life sciences. 
Other users include geneticists, microbiologists, biochemists, plant and agricultural 
scientists, medical researchers, and evolution researchers.

The ongoing exponential expansion of data for the life sciences is both the major 
challenge and the raison d’être for twenty-first century Bioinformatics. To give one 
example among many, the completion and success of the human genome sequencing 
project, far from being the end of the sequencing era, motivated a proliferation of new 
sequencing projects. And it is not only the quantity of data that is expanding; new types
of biological data continue to be introduced as a result of technological development 
and a growing understanding of biological systems.

Bioinformatics describes a selection of methods from across this vast and expand-
ing discipline. The methods are some of the most useful and widely applicable in the 
field. Most users and developers of Bioinformatics methods will find something of value 
to their own specialties here, and will benefit from the knowledge and experience of its 86 
contributing authors. Developers will find them useful as components of larger meth-
ods, and as sources of inspiration for new methods. Volume I, Section IV in particular 
is aimed at developers; it describes some of the “meta-methods”—widely applicable 
mathematical and computational methods that inform and lie behind other more spe-
cialized methods—that have been successfully used by bioinformaticians. For users of 
Bioinformatics, this book provides methods that can be applied as is, or with minor vari-
ations to many specific problems. The Notes section in each chapter provides valuable 
insights into important variations and when to use them. It also discusses problems that 
can arise and how to fix them. This work is also intended to serve as an entry point for 
those who are just beginning to discover and use methods in Bioinformatics. As such, 
this book is also intended for students and early career researchers.

As with other volumes in the Methods in Molecular Biology™ series, the intention 
of this book is to provide the kind of detailed description and implementation advice 
that is crucial for getting optimal results out of any given method, yet which often is not 
incorporated into journal publications. Thus, this series provides a forum for the com-
munication of accumulated practical experience.

The work is divided into two volumes, with data, sequence analysis, and evolution 
the subjects of the first volume, and structure, function, and application the subjects of 
the second. The second volume also presents a number of “meta-methods”: techniques 
that will be of particular interest to developers of bioinformatic methods and tools.

Within Volume I, Section I deals with data and databases. It contains chapters on 
a selection of methods involving the generation and organization of data, including 
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sequence data, RNA and protein structures, microarray expression data, and func-
tional annotations.

Section II presents a selection of methods in sequence analysis, beginning with 
multiple sequence alignment. Most of the chapters in this section deal with methods 
for discovering the functional components of genomes, whether genes, alternative 
splice sites, non-coding RNAs, or regulatory motifs.

Section III presents several of the most useful and interesting methods in phylogenetics 
and evolution. The wide variety of topics treated in this section is indicative of the breadth 
of evolution research. It includes chapters on some of the most basic issues in phylogenet-
ics: modelling of evolution and inferring trees. It also includes chapters on drawing infer-
ences about various kinds of ancestral states, systems, and events, including gene order, 
recombination events and genome rearrangements, ancestral interaction networks, lateral 
gene transfers, and patterns of migration. It concludes with a chapter discussing some of 
the achievements and challenges of algorithm development in phylogenetics.

In Volume II, Section I, some methods pertinent to the prediction of protein and 
RNA structures are presented. Methods for the analysis and classification of structures 
are also discussed.

Methods for inferring the function of previously identified genomic elements 
(chiefly protein-coding genes) are presented in Volume II, Section II. This is another 
very diverse subject area, and the variety of methods presented reflects this. Some 
well-known techniques for identifying function, based on homology, “Rosetta stone” 
genes, gene neighbors, phylogenetic profiling, and phylogenetic shadowing are 
discussed, alongside methods for identifying regulatory sequences, patterns of expres-
sion, and participation in complexes. The section concludes with a discussion of a 
technique for integrating multiple data types to increase the confidence with which 
functional predictions can be made. This section, taken as a whole, highlights the 
opportunities for development in the area of functional inference.

Some medical applications, chiefly diagnostics and drug discovery, are described in 
Volume II, Section III. The importance of microarray expression data as a diagnostic 
tool is a theme of this section, as is the danger of over-interpreting such data. The case 
study presented in the final chapter highlights the need for computational diagnostics 
to be biologically informed.

The final section presents just a few of the “meta-methods” that developers of 
Bioinformatics methods have found useful. For the purpose of designing algorithms, 
it is as important for bioinformaticians to be aware of the concept of fixed parameter 
tractability as it is for them to understand NP-completeness, since these concepts often 
determine the types of algorithms appropriate to a particular problem. Clustering is 
a ubiquitous problem in Bioinformatics, as is the need to visualize data. The need to 
interact with massive data bases and multiple software entities makes the development 
of computational pipelines an important issue for many bioinformaticians. Finally, the 
chapter on text mining discusses techniques for addressing the special problems of 
interacting with and extracting information from the vast biological literature.

Jonathan M. Keith
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Chapter 1

Managing Sequence Data

Ilene Karsch Mizrachi

Abstract

Nucleotide and protein sequences are the foundation for all bioinformatics tools and resources. Research-
ers can analyze these sequences to discover genes or predict the function of their products. The INSD 
(International Nucleotide Sequence Database—DDBJ/EMBL/GenBank) is an international, central-
ized primary sequence resource that is freely available on the internet. This database contains all publicly 
available nucleotide and derived protein sequences. This chapter summarizes the nucleotide sequence 
database resources, provides information on how to submit sequences to the databases, and explains how 
to access the sequence data.

Key words: DNA sequence database, GenBank, EMBL, DDBJ, INSD.

The International Nucleotide Sequence Database (INSD) is a cen-
tralized public sequence resource. As of August 2007, it contains 
over 101 million DNA sequences comprised of over 181 billion 
nucleotides, numbers that continue to increase exponentially. 
Scientists generate and submit their primary sequence data to 
INSD as part of the publication process. The database is archival 
and represents the results of scientists’ experiments. The annota-
tion, represented by annotated features such as coding regions, 
genes, and structural RNAs, on the sequence is based on the 
submitter’s observations and conclusions rather than those of the 
database curators.

1. Introduction1. Introduction

Jonathan M. Keith (ed.), Bioinformatics, Volume I: Data, Sequence Analysis, and Evolution, vol. 452
© 2008 Humana Press, a part of Springer Science + Business Media, Totowa, NJ
Book doi: 10.1007/978-1-60327-159-2 Springerprotocols.com
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4 Mizrachi

The International Nucleotide Sequence Database (INSD) 
Collaboration is a partnership among GenBank (http://www.
ncbi.nlm.nih.gov/Genbank/) NCBI, NLM, NIH, Bethesda, 
MD, (1) EMBL database (http://www.ebi.ac.uk/EMBL/) EBI, 
Hinxton, United Kingdom, (2) and DDBJ (http://www.ddbj.
nig.ac.jp/) National Institute of Genetics, Mishima, Japan (3).
For over 25 years, GenBank, EMBL, and DDBJ have maintained 
this active, successful collaboration for building and maintain-
ing nucleotide sequence databases. Representatives from the 
three databases meet annually to discuss technical and biological 
issues affecting the databases. Ensuring that sequence data from 
scientists worldwide is freely available to all is the primary mis-
sion of this group. As part of the publication process, scientists 
are required to deposit sequence data in a public repository; the 
INSD encourages publishers of scientific journals to enforce this 
policy to ensure that sequence data associated with a paper are 
freely available from an international resource. One advantage to 
depositing sequences in INSD is that they are available electroni-
cally, which is far more usable to the scientific community than 
having the sequences in a printed paper. Consequently, scientists 
can download a sequence from INSD and analyze the sequences 
as part of their research.

The three databases have built a shared web site, http://
insdc.org (Fig. 1.1), which contains information, policies, and 
procedures that are important for the collaborators, submitters, 
and users. This site contains:
 1. The data release policy
 2. Standards for submission of sequences to the nucleotide 

databases
 3. The Feature Table Document, outlining legal features and 

syntax to be included in the sequence record in order to 
standardize annotation across the databases (see Note 1)

 4. Links to the three contributing databases’ websites, where 
submitters can find information regarding submission and 
sequence retrieval that is specific to each database

Each of the three INSD contributors has its own set of submis-
sion (see Section 4.1) and retrieval tools (see Note 2). Although 
scientists may submit data to any of the three databases for inclu-
sion in INSD, data processed at each site are exchanged daily so 
that a sequence submitted to any of the three databases will be 
retrievable from all three sites. In order to avoid entries that are 
out of sync at the three sites, submitters must update their sub-
missions only at the site where they initially submitted the data. 
Updates are also propagated to the other two sites through the 
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daily exchange mechanism, just as are new submissions. Although 
the sequence data and all of the information contained within a 
sequence record are the same, each site presents the data in a 
slightly different format.

The Reference Sequence (RefSeq) database (4) at NCBI (http://
www.ncbi.nlm.nih.gov/RefSeq/) provides a curated non-redun-
dant collection of genomic DNA, transcript (RNA), and protein 
sequences from a number of biologically significant organisms. 
RefSeq entries are not part of INSD but are derived from INSD 
records. RefSeq entries can be retrieved from Entrez (see Section
10.2) and the NCBI ftp site (see Section 10.1). They differ from 
primary INSD data in that each RefSeq record is a synthesis of 
information from a number of sources, so it is not a piece of pri-
mary research data itself. RefSeq curators use information from 
the literature and other sources to create a curated view of each 
sequence. At present, not all RefSeq records represent a fully 
curated “review” of a particular gene or transcript and are there-
fore labeled in the COMMENT (see Section 7) section of the flat 
file. Entries labeled as REVIEWED have been curated by a mem-
ber of the NCBI staff or a collaborator who reviewed additional 
available sequence and the literature to expand the annotation 
and sequence of the record. This information is included as links 
to other sources: published articles, the Entrez Gene database, 

2.2. The NCBI 
RefSeq Project
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Fig. 1.1. Home page for International Nucleotide Sequence Database Collaborators (http://www.insdc.org).
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and organism-specific databases. VALIDATED RefSeq records 
have undergone an initial review and are still subject to a final 
review. The annotation in PROVISIONAL RefSeq records has 
not yet been subject to curator review, yet there is good evidence 
that the annotation represents valid transcripts and proteins. 
PREDICTED RefSeq records contain transcript and protein 
annotation that represents ab initio predictions, which may or 
may not be supported by transcript evidence. The RefSeq col-
lection, especially the REVIEWED RefSeq records, provides an 
excellent view into an organism’s genome.

INSD processes thousands of new sequence submissions per 
month from scientists worldwide. The typical INSD submission 
consists of a single, contiguous stretch of DNA or RNA sequence 
with annotations which represent the biological information 
in the record. The submissions come from a variety of submit-
ters, from small laboratories doing research on a particular gene 
or genes, to genome centers doing high-throughput sequenc-
ing. Many sequences that come from large sequencing centers 
undergo automated bulk submission processing with very lit-
tle annotator review. (These types of submissions are described 
later.) The “small-scale” submissions may be a single sequence 
or sets of related sequences, and they usually contain annotation. 
Submissions include mRNA sequences with coding regions, frag-
ments of genomic DNA with a single gene or multiple genes, or 
ribosomal RNA gene clusters. If part of the nucleotide sequence 
encodes a protein, a coding sequence (CDS) and resulting con-
ceptual translation are annotated. A protein accession number 
(/protein_id) is assigned to the translation product.

Multiple sequences can be submitted and processed together 
for GenBank as a set. Groups of sequences may also be submitted 
to DDBJ and EMBL but they do not use the same set concept as 
does GenBank. With the Sequin submission tool (which is fur-
ther described later), submitters can specify that the sequences 
are biologically related by classifying them as environmental sam-
ple, population, phylogenetic, or mutation sets. Environmental 
sample, population, phylogenetic, and mutation sets all con-
tain a group of sequences that span the same gene or region of 
the genome. Members of environmental sets are unclassified or 
unknown organisms. Population sets contain sequences from dif-
ferent isolates of the same organism, whereas phylogenetic sets 
contain sequences from related organisms. The multiple muta-
tions of a single gene from a single species can be submitted as 
a mutation set. Each sequence within a set is assigned its own 
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accession number and can be viewed independently in Entrez. 
However, each set is also indexed within the PopSet division of 
Entrez, allowing scientists to view the relationship among the 
set’s sequences through an alignment.

Expressed Sequence Tags (ESTs), Sequence Tagged Sites (STSs), 
and Genome Survey Sequences (GSSs) are generally submitted in 
a batch and are usually part of a large sequencing project devoted 
to a particular genome. These entries have a streamlined sub-
mission process and undergo minimal processing before being 
released to the public. EST sequences (http://www.ncbi.nlm.
nih.gov/dbEST/) are single-pass cDNA sequences from a par-
ticular tissue and/or developmental stage and are commonly 
used by genome annotation groups to place predicted genes on 
the genome.

STS sequences (http://www.ncbi.nlm.nih.gov/dbSTS/) are 
short genomic landmark sequences that define a specific location 
on the genome and are, therefore, useful for mapping.

GSS sequences (http://www.ncbi.nlm.nih.gov/dbGSS/) are 
short sequences derived from genomic DNA and include, but 
are not limited to, single-pass genome sequences, BAC ends, and 
exon-trapped genomic sequences. Like EST sequence records, 
GSS sequence records do not contain annotation but can be 
useful for genome mapping or annotation. EST, STS, and GSS 
sequence records reside in their own respective divisions within 
INSD, rather than in the taxonomic division of the organism.

The Mammalian Gene Collection (MGC; http://mgc.nci.nih.gov/) 
is a trans-NIH initiative that provides full-length open reading 
frame (FL-ORF) clones for human, mouse, cow, and rat genes. 
The sequences for the MGC clones can be found in INSD, and 
the clones that correspond to each of the sequences can be pur-
chased for further study. As of October 2006, there were over 
24,000 human full ORF clones, which represent about 14,400 
non-redundant genes. In Entrez, users can link from the GenBank 
view of the MGC sequence to other biological resources at NCBI: 
the Gene database to see information about the gene structure; 
MapViewer to see placement of the clone in the genome; dbSNP 
to see the polymorphisms that exist for the gene; and OMIM, 
the catalog of human genes and genetic disorders. Investigators 
can then obtain a clone that they have identified as interesting 
by computational study, to perform laboratory experiments and 
learn more about the gene in question.

INSD has received and released more than 300 complete micro-
bial genomes since 1996. These genomes are relatively small in 
size compared with their eukaryotic counterparts, ranging from 
500,000 to 5 million bases. Nonetheless, these genomes contain 
thousands of genes, coding regions, and structural RNAs. 
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The database staff reviews the annotation on the genomes to 
confirm that it is consistent with the annotation standards. Many 
of the genes in microbial genomes have been identified only by 
similarity to genes in other genomes, and their gene products are 
often classified as hypothetical proteins. Each gene within a micro-
bial genome is assigned a locus tag, a unique identifier for a par-
ticular gene in a particular genome. Since the function of many 
of the genes is unknown, locus tag names have become surrogate 
gene names. To ensure that a locus tag is unique for a particular 
gene, submitters must register with DDBJ, EMBL, or GenBank for 
a unique locus tag prefix for each genome being submitted.

The High Throughput Genomic (HTG) sequence division 
(http://www.ncbi.nlm.nih.gov/HTGS/) was created to accom-
modate a growing need to make unfinished, clone-based genomic 
sequence data rapidly available to the scientific community. HTG 
entries are submitted in bulk by genome centers, processed by 
an automated system, and then immediately released to the pub-
lic database. HTG sequences are submitted at differing levels of 
completion (Fig. 1.2). Phase 0 sequences are one-to-few reads 
of a single clone and are not usually computationally assembled 
by overlap into larger contiguous sequences (contigs). Phase 1 
entries are assembled into contigs that are separated by sequence 
gaps and whose relative order and orientation are not known. 
Phase 2 entries are also assembled unfinished sequences that may 
or may not contain sequence gaps. If there are gaps, then the con-
tigs are in the correct order and orientation. Phase 3 sequences 
are of finished quality and have no gaps. HTG sequences may be 
annotated. The human genome was completed using the clone-
based HTG sequencing method.

In 2001, a new approach for sequencing complete genomes was 
introduced: Whole Genome Shotgun (WGS) sequencing (http://
www.ncbi.nih.gov/Genbank/wgs.html). This has become such a 
dominant sequencing technique that more nucleotides of WGS 
sequence have been added to INSD over the past 6 years than 
from all of the other divisions since the inception of the database. 
Rather than using traditional clone-based sequencing technology, 

3.5. High Throughput 
Genomic Sequence
3.5. High Throughput 
Genomic Sequence
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Fig. 1.2. Diagram showing the orientation and gaps that might be expected in high through-
put sequence from phases 0, 1, 2, and 3.
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as is done for HTG, WGS sequences are generated by breaking the 
genome into random fragments and sequencing them. Multiple 
overlapping reads of sequence are then computationally assem-
bled to form a contig. Contig sequences can be assembled into 
larger structures called scaffolds. Scaffold records, which are in 
the CON division, contain information regarding the relative 
positions of contigs in the genome; they can be simply multiple 
contigs connected by gaps or they could be entire chromosomes 
built from contigs and gaps. Gaps between contigs may be of 
known or unknown length. All of the contig sequences from 
a single genome assembly project, along with the instructions 
for building scaffolds, are submitted together as a single WGS 
project. Like HTG, these sequences can be submitted with or 
without annotation. As sequencing progresses and new assem-
blies are computed, a new version is submitted to INSD that 
supersedes the previous version. Although there is no tracking of 
sequences between assemblies, sequences from prior assemblies 
are always retrievable by accession number or gi in Entrez.

A WGS project accession number has a different format from 
other INSD accession numbers. It is composed of a four-letter 
project ID code, a two-digit assembly version number, and a 
six- to eight-digit contig ID. For example, the Neurospora crassa
WGS project was assigned project accession AABX00000000, 
the first version of the genome assembly is AABX01000000 and 
AABX01000111 is the 111th contig of the WGS project assem-
bly version 1. For each project, a master record (Fig. 1.3) is cre-
ated that contains information that is common among all the 
records of the sequencing projects, such as the biological source, 
submitter information, and publication information. Each master 
record includes links to the range of accession numbers for the 
individual contigs in the assembly and links to the range of acces-
sions for the scaffolds from the project.

The vast amount of publicly available data from the human genome 
project and other genome sequencing efforts is a valuable resource 
for scientists throughout the world. Although a laboratory studying 
a particular gene or gene family has sequenced numerous cDNAs; 
it may have neither the resources nor inclination to sequence 
large genomic regions containing the genes, especially when the 
sequence is available in public databases. Instead, researchers might 
choose to download genomic sequences from INSD and perform 
analyses on these sequences. However, because the researchers did 
not perform the sequencing, the sequence with its new annota-
tions cannot be submitted to INSD, excluding potentially impor-
tant scientific information from the public databases. To address 
this problem, the INSD established a dataset for Third Party 
Annotation (TPA; www.ncbi.nlm.nih.gov/Genbank/tpa.html). 
All sequences in TPA are derived from the publicly available 
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collection of sequences in INSD and/or the Trace Archive (see
Note 3). Researchers can submit both new and alternative anno-
tation of genomic sequence to INSD as TPA records. Addi-
tionally, the TPA dataset contains an mRNA sequence created 
either by combining exonic sequences from genomic sequences 
or assembling overlapping EST or other mRNA sequences. 
TPA sequences are released to the public database only when 
their accession numbers and/or sequence data appear in a peer-
reviewed publication in a biological journal.

There are two categories of data in the TPA repository, TPA:
experimental and TPA:inferential. To be in the experimental cate-
gory of TPA, a record’s annotation must be supported by wet-lab 

Fig. 1.3. WGS master sequence record that contains two new line types: WGS, which points to the component contig 
records, and WGS_SCAFLD, which points to the scaffold records.
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experimental evidence. The annotation of sequences in inferential 
TPA is derived by inference rather than direct experimentation. 
Sequences in this category of TPA may be members of gene fami-
lies in which the annotation of homologous family members was 
determined experimentally by the submitter, and the annotation 
of the TPA:inferential sequence is based on a comparison to this 
experimentally derived sequence. Additionally, a complete anno-
tated organellar or viral genome, in which the annotated features 
may be a mix of experimentally and inferentially determined data, 
assembled from sequences in the primary databases may be 
submitted as a TPA:inferential record.

DDBJ, EMBL, and GenBank each have a web-based submis-
sion tool in which submitters complete a series of forms with 
information about the sequences and annotation. DDBJ’s web-
based submission tool is called SAKURA (http://sakura.ddbj.
nig.ac.jp/), EMBL’s web-based submission tool is called Webin 
(http://www.ebi.ac.uk/embl/Submission/webin.html), and 
GenBank’s web-based submission tool is called BankIt (http://
www.ncbi.nlm.nih.gov/BankIt/). Each database also has addi-
tional submission systems for the submission of large datasets, 
batch submissions, and genome submissions.

Sakura, Webin, and BankIt are convenient ways to submit 
a small number of sequences with simple annotation. Users are 
prompted to enter submitter information, the nucleotide sequence, 
biological source information, and features and annotation perti-
nent to the submission. All of these tools have help documentation 
to guide submitters and sets of annotation examples that detail the 
information that is required for each type of submission.

These web-based tools have quality assurance and validation 
checks and report the results back to the submitter for resolution. 
For example, in BankIt, a BLAST similarity search compares the 
sequence to the UniVec (http://www.ncbi.nlm.nih.gov/VecScreen/) 
database to prevent the deposition of sequences that still contain 
cloning vector sequence. Before submitting their records to the 
database, submitters have the opportunity to review their entries to 
confirm that the information included is necessary and correct.

Webin and Sakura submitters can access previous submissions 
in order to resume partially completed submissions or copy infor-
mation from a previous submission to a new submission by enter-
ing the ID and password from the previous submission. GenBank 
is developing the next generation of BankIt to allow submitters 
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to set up a login so that they can access information from previous
submissions, among other things.

For submitters who prefer a non web-based tool or have large or 
complex submissions, Sequin (http://www.ncbi.nlm.nih.gov/
Sequin/index.html) is a stand-alone application that can be used for 
the annotation and analysis of nucleotide sequences. It is avail-
able on NCBI’s ftp site: ftp://ftp.ncbi.nih.gov/sequin/ (see Note
4) and is the preferred submission tool for complex submissions 
to GenBank that contain a significant amount of annotation or 
many sequences. Although DDBJ and EMBL accept submissions 
generated by Sequin, they prefer to receive submissions generated 
by Sakura or Webin, respectively. Sequin uses a series of wizards to 
guide submitters through preparing their files for submission. Such 
files include: nucleotide and amino acid sequences in FASTA for-
mat (see Note 5), spreadsheets for source organism information (see
Note 8a) and tables for feature annotation (see Note 8c). For sub-
mitting multiple, related sequences (e.g., those in a phylogenetic 
or population study), Sequin accepts the output of many popular 
multiple sequence-alignment packages, including FASTA+GAP, 
PHYLIP, and NEXUS. With a sequence alignment, submitters 
can annotate features on a single record and then propagate these 
features to the other records instead of annotating each record 
individually. Prior to submission to the database, the submitter is 
encouraged to validate his or her submission and correct any error 
that may exist (see Note 6). Completed Sequin submissions are 
submitted by e-mailing them to DDBJ, EMBL, or GenBank or 
by uploading them directly to GenBank using SequinMacroSend 
(http:/www.ncbi.nlm.nih.gov/LargeDirSubs/dir_submit.cgi).

tbl2asn (http://www.ncbi.nlm.nih.gov/Genbank/tbl2asn2.html) 
is a command-line program that automates the creation of 
sequence records for submission to GenBank using many of the 
same functions as Sequin. It is used primarily for submission 
of complete genomes and large batches of sequences in which 
the detailed tools in Sequin are not necessary. tbl2asn requires 
a template file, plus FASTA sequence files (see Note 5), and 
tab-delimited five-column table files (see Note 8c) with the 
annotation. The program reads these files to create a submission
that can be validated (see Note 6) and submitted to GenBank. 
Tbl2asn is available by ftp from the NCBI ftp site (see Note 4):
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_pro-
gram/tbl2asn/. This program, like Sequin, can be downloaded to 
be run in a number of different operating systems.

5. Sequin5. Sequin
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A GenBank sequence record is most familiarly viewed as a flat 
file with the information being presented in specific fields. DDBJ 
and GenBank flat files are similar in design. The EMBL flat file 
format, however, is different in design but identical in content to 
flat files from GenBank and DDBJ.

Here is the top of the GenBank flat file, showing the top seven fields.

LOCUS AF123456 1510 bp mRNA linear VRT 
25-JUL-2000

DEFINITION Gallus gallus doublesex and mab-3 
related transcription factor 1

 (DMRT1) mRNA, partial cds.
ACCESSION AF123456
VERSION AF123456.2 GI:6633795
KEYWORDS .
SOURCE Gallus gallus (chicken)
 ORGANISM Gallus gallus

 Eukaryota; Metazoa; Chordata; 
 Craniata; Vertebrata; Euteleostomi;
 Archosauria; Aves; Neognathae; 
 Galliformes; Phasianidae;
 Phasianinae; Gallus

The first token of the LOCUS field is the locus name. At present, 
this locus name is the same as the accession number, but in the 
past, more descriptive names were used. For instance, HUMHBB 
is the locus name for the human beta-globin gene in the record 
with accession number U01317. With the increase in the number 
of redundant sequences over time, the generation of descriptive 
locus names was abandoned. Following the locus name is the 
length of the sequence, molecule type of the sequence, topol-
ogy of the sequence (linear or circular), GenBank taxonomic or 
functional division, and date of the last modification. The DEFI-
NITION line gives a brief description of the sequence including 
information about the source organism, gene(s), and molecule 
information. The ACCESSION is the database-assigned acces-
sion number, which has one of the following formats: two let-
ters and six digits or one letter and five digits for INSD records; 
four letters and eight digits for WGS records; and two letters, 
an underscore, and six to eight digits for RefSeq records. The 
VERSION line contains the sequence version and the gi, a 
unique numerical identifier for that particular sequence. A Gen-
Bank record may or may not have KEYWORDS. Historically, 
the KEYWORD field in the GenBank record was used as a sum-
mary of the information present in the record. It was a free text 
field and may have contained gene name, protein name, tissue 
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localization, and so on. Information placed on this line was more 
appropriately placed elsewhere in the sequence record. GenBank 
strongly discourages the use of keywords to describe attributes 
of the sequence. Instead, GenBank uses a controlled vocabulary 
on the KEYWORD line to describe different submission types or 
divisions (see Note 7).

The SOURCE and ORGANISM contain the taxonomic 
name and the taxonomic lineage, respectively, for that organism.

The next section of the GenBank flat file contains the biblio-
graphic and submitter information:

REFERENCE 1 (bases 1–1,510)
AUTHORS Nanda, I., Shan, Z.H., 

 Schartl, M., Burt, D.V., Koehler, M., 
 Nothwang, H.-G., Gruetzner, F., 
 Paton, I.R., Windsor, D., Dunn, I.,
 Engel, W., Staeheli, P., 
 Mizuno, S., Haaf, T., and Schmid, M.

TITLE 300 million years of conserved 
synteny between chicken Z and 
human chromosome 9.

JOURNAL Nat Genet 21(3):258–259 (1999)
PUBMED 10080173
...
REFERENCE 3 (bases 1–1,510)
AUTHORS Haaf, T. and Shan, Z.H.
TITLE Direct Submission
JOURNAL Submitted (25-JAN-1999) Max-Planck 

Institute for Molecular Genetics, 
Ihnestr. 73, Berlin 14195, Germany

COMMENT On Dec 23, 1999 this sequence 
version replaced gi:4454562.

The REFERENCE section contains published and unpub-
lished references. Many published references include a link to a 
PubMed ID number that allows users to view the abstract of the 
cited paper in Entrez PubMed. The last REFERENCE cited in a 
record reports the names of submitters of the sequence data and 
the location where the work was done. The COMMENT field 
may have submitter-provided comments about the sequence. 
In addition, if the sequence has been updated, then the COM-
MENT will have a link to the previous version.

7. Reference 
Section
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The FEATURES section contains the source feature, which has 
additional information about the source of the sequence and the 
organism from which the DNA was isolated. There are approxi-
mately 50 different standard qualifiers that can be used to describe
the source. Some examples are /strain, /chromosome, and /isola-
tion_source.

FEATURES Location/Qualifiers
 source 1..1510

 /organism=“Gallus gallus”
/mol_type=“mRNA”
/db_xref=“taxon:9031”
/chromosome=“Z”
/map=“Zp21”

 gene <1..1510
/gene=“DMRT1”
/note=“expressed in genital ridges 
of both males and
females prior to the sexual 
determination, restricted to
the male gonads after sex 
determination; DMRT1 is a
candidate sex determination factor 
in vertebrates”

 CDS  <1..936
/gene=“DMRT1”
/note=“cDMRT1”
/codon_start=1
/product=“doublesex and mab-3 
related transcription factor 1”
/protein_id=“AAF19666.1”
/db_xref=“GI:6633796”
/translation=“PAAGKKLPRLPKCARCRNHGYS
SPLKGHKRFCMWRDCQCKKCSL
IAERQRVMAVQVALRRQQAQEEELGISHPVPLP-
SAPEPVVKKSSSSSSCLLQDSSSPA
HSTSTVAAAAASAPPEGRMLIQDIPSIPSRGH-
LESTSDLVVDSTYYSSFYQPSLYPYY
NNLYNYSQYQMAVATESSSSETGGTFVGSAM-
KNSLRSLPATYMSSQSGKQWQMKGMEN
RHAMSSQYRMCSYYPPTSYLGQGVGSPTCVTQI-
LASEDTPSYSESKARVFSPPSSQDS
GLGCLSSSESTKGDLECEPHQEPGAFAVSPVLEGE”

ORIGIN
 1 ccggcggcgg gcaagaagct gccgcgtctg 

cccaagtgtg cccgctgccg caaccacggc
 61 tactcctcgc cgctgaaggg gcacaagcgg 

ttctgcatgt ggcgggactg ccagtgcaag

7.1. Features and 
Sequence
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 121 aagtgcagcc tgatcgccga gcggcagcgg 
gtgatggccg tgcaggttgc actgaggagg

...

Following the source feature are features that describe the 
sequence, such as gene, CDS (coding region), mRNA, rRNA, 
variation, and others. Like the source feature, other features can 
be further described with feature-specific qualifiers. For example, 
an important qualifier for the CDS feature is a /translation
that contains the protein sequence. Following the Feature 
section is the nucleotide sequence itself.

GenBank records are grouped into 20 divisions; the majority 
of these are taxonomic groupings. The other divisions group 
sequences by a specific technological approach, such as HTG or 
GSS. Sequences in the technique-based divisions often have a 
specific keyword in the record (see Note 7).

These GenBank divisions are:
 1. PRI: Primate sequences
 2. ROD: Rodent sequences
 3. MAM: Other mammalian sequences
 4. VRT: Other vertebrate sequences
 5. INV: Invertebrate sequences
 6. PLN: Plant, fungal, and algal sequences
 7. BCT: Bacterial sequences
 8. VRL: Viral sequences
 9. PHG: Bacteriophage sequences
10. SYN: Synthetic sequences
 11. UNA: Unannotated sequences
12. EST: Expressed sequence tags
13. PAT: Patent sequences
 14. STS: Sequence tagged sites
 15. GSS: Genome survey sequences
 16. HTG: High throughput genomic sequences
 17. HTC: High throughput cDNA sequences
 18. ENV: Environmental sampling sequences
 19. TPA: Third Party Annotation
20. CON: Constructed entries

Direct submissions to INSD are analyzed and validated in a  multiple-
step process by the annotation staff at each of the three sites. The 
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first level of review occurs before accession numbers are assigned to 
ensure that the submissions meet the minimal criteria to be accepted 
into INSD. Sequences should be >50 bp in length and be sequenced 
by, or on behalf of, the group submitting the sequence. They 
must also represent molecules that exist in nature (not a consensus 
sequence or a mix of genomic or mRNA sequence). Submissions 
are also confirmed to be new data rather than updates to sequences 
submitted previously by the same submitter.

Once sequences receive accession numbers, they are reviewed 
more extensively by the annotation staff, who use a variety of 
tools to annotate and validate the sequence and annotation 
data. At GenBank, a more robust version of the submission tool 
Sequin is used by the annotation staff to edit sequence records. 
Global editing allows the annotation staff to annotate large sets 
quickly and efficiently. Submissions are stored in a database that 
is accessed through a queue management tool, which automates 
some of the processing steps before staff review. These steps 
include: confirming taxonomic names and lineages, confirm-
ing bibliographic information for published references, start-
ing BLAST searches, and running automatic validation checks. 
Hence, when an annotator is ready to work on a record, all of 
this information is immediately accessible. In addition, all of the 
correspondence between GenBank staff and submitters is stored 
in the database with the record.

The GenBank annotation staff checks all submissions for:
● Biological validity: Does the conceptual translation of a cod-

ing region match the amino acid sequence provided by the 
submitter? Is the source organism name present in NCBI’s 
taxonomy database? Does the submitter’s description of the 
sequence agree with the results of a BLAST similarity search 
against other sequences?

● Vector contamination: Sequences are screened against NCBI’s 
UniVec to detect contaminating cloning vector sequence.

● Publication status: If there is a published reference, a PubMed 
ID is added to the record so that the sequence and publica-
tion records can be linked in Entrez.

● Formatting and spelling
Similar procedures are also carried out at DDBJ and EMBL.

If there are problems with the sequence or annotation, the 
annotator works with the submitter by e-mail to correct the prob-
lems. Using Sequin, the annotator can incorporate corrected 
sequence and/or annotation files from submitters during process-
ing. Completed entries are sent to the submitter for a final review 
before their release into the public database. Submitters may request 
that INSD hold their sequence until a specified future release date. 
Records will be held until that date or when the accession number 
or the sequence is published, whichever is first.
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The GenBank annotation staff currently processes about 
2,200 submissions per month, corresponding to approximately 
40,000 sequences.

In contrast to the processing of “direct submissions,” genome 
submissions, including WGS and HTG, go through a more 
automated process. HTG submissions are deposited by the 
submitter in an FTP directory, and a number of automated 
validation checks are performed. If there are no problems with 
the sequences, then they are released directly into the public 
database without any manual review. If there are problems, the 
sequences are flagged so that a GenBank annotator can review 
the problem and advise the submitter to deposit a corrected 
version of the record. GenBank annotators do not make the 
modifications for the submitters; they require that the submit-
ters make the change and resubmit the sequence. This strat-
egy forces submitters to make the appropriate changes in their 
own database, so that problems are corrected when they next 
update these records.

Genome submissions and WGS submissions are processed 
by GenBank annotators using a number of scripts and tools to 
review the annotation in bulk. Often these types of submissions 
contain thousands of features, and manual review of each feature 
is not feasible.

An INSD record can be updated by the submitter any time new 
information is acquired. Updates can include: adding a new 
sequence, correcting an existing sequence, adding a publication, 
or adding a new annotation (see Note 8). The new, updated 
record replaces the older one in the database and retrieval and 
analysis tools. However, because INSD is archival, a copy of the 
older record is maintained in the database. If the sequence has 
changed as part of the update, the version (accession.version) 
gets incremented and the gi changes. For example, the sequence 
in AF123456.1 was updated on December 23, 1999 and became 
AF123456.2. A COMMENT is added to the updated GenBank 
flat file that indicates when the sequence is updated and provides 
a link to the older version of the sequence.

COMMENT On Dec 23, 1999 this sequence 
version replaced gi: 4454562.

However, if the sequence does not change during the update, 
the accession.version and the gi do not change. Regardless of 
the actual update, users can retrieve older versions of the record 
using the Sequence Revision History tool (Fig. 1.4) from Entrez 
(http://www.ncbi.nlm.nih.gov/entrez/sutils/girevhist.cgi).

If sequence records are released to the database and then later 
found to include misidentified source organisms or  contaminated

8.2. Processing of 
Batch Submissions: 
HTG, WGS, and 
Genomes

8.2. Processing of 
Batch Submissions: 
HTG, WGS, and 
Genomes

8.3. Updates and 
Maintenance of the 
Database

8.3. Updates and 
Maintenance of the 
Database
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sequence data, the records can be removed from distribution 
to the public databases. When removed, the records are no 
longer available for text-based queries in the retrieval tools of 
the INSD databases. However, they still remain retrievable by 
accession number so that scientists who previously worked with 
this sequence data still may access them. In Entrez, a comment 
is added to the record to indicate why it was removed from dis-
tribution so that any scientist who has used its data is alerted 
that information in it may be compromised. This removal mecha-
nism is also used for submitters who request that we hold their 
sequences confidential after they have been released. This situ-
ation can occur when sensitive data has been released publicly 
before a corresponding paper has been published.

Because INSD is an archival primary sequence database, submitters 
“own” their annotation and are primarily responsible for ensuring 
that it is correct. Database staff review records for accuracy and 
inform submitters of any problems. However, if submitters do not 
agree that this analysis is accurate, they do not need to make any 
changes to their records. If entries with poor annotation appear in 
the database, they may be used by other scientists to validate their 
own data and possibly prepare a submission to the database. This 
may lead to the propagation of bad data to subsequent entries in 
the database.

9. Pitfalls of an 
Archival Primary 
Sequence
Database

9. Pitfalls of an 
Archival Primary 
Sequence
Database

9.1. Bad Annotation 
and Propagation
9.1. Bad Annotation 
and Propagation

Fig. 1.4. Sequence Revision History page allows users to retrieve older versions of a sequence record prior to it being 
updated. Sequence changes are indicated by incrementing the version number. This page also allows users to show 
differences between two different versions of a sequence record by choosing a version in columns I and II and then 
clicking the Show button.
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Other submitter-based sources of error result from seg-
ments of the database that are not manually reviewed, as are 
the direct submissions. These segments are some of the bulk 
sequences such as HTG, GSS, EST, and WGS, which undergo 
automated processing. The sheer volume of data that is sub-
mitted to these data streams precludes a manual check of all 
the sequences. The automated checks in this bulk processing 
are intended to catch the most egregious problems. However, 
mis-annotation of genes, for instance, could slip through this 
processing undetected.

The NCBI RefSeq project was created in part to deal with 
this problem. Entries in RefSeq (especially those that are flagged 
REVIEWED) have undergone some curation to assure that the 
annotation of the sequence in question is correct. In addition to 
curation by the database staff, there is a mechanism for users and 
experts in the scientific community to add annotation to these 
records using GeneRif (http://www.ncbi.nlm.nih.gov/projects/
GeneRIF/GeneRIFhelp.html). Scientists can add comments and 
links to published scientific papers that enhance or confirm the 
annotation.

The GenBank staff actively removes vector contamination from 
sequence submissions when it is discovered. Our method for 
detecting and correcting such data is to use a specialized BLAST 
database that has been developed to check for vector contami-
nation. We screen all direct submissions against the UniVec 
(Fig. 1.5) http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html 
database, remove the vector contamination from any submis-
sion in which it is detected, and report the vector’s discovery and 
removal to the submitters. Although the GenBank submissions 
staff screens all incoming submissions against the UniVec data-
base, there are a number of new cloning vector sequences and 
linkers that are not yet represented in the database. Therefore, 
it is still possible that sequences in the database contain some 
vector contamination. UniVec is being updated to address this 
problem.

When sequences contain coding regions, it is often easy to 
confirm the strandedness of the gene on the nucleotide sequence 
by determining the conceptual translation. This translation can 
then be run through a BLAST similarity search to determine the 
correct reading frame or sequence strand for the coding region. 
Unfortunately, if the gene is a structural RNA, that determina-
tion cannot be made as easily. Because ribosomal RNA sequences 
have been submitted to INSD on both strands, BLAST similarity 
search results cannot clearly determine the strandedness of the 
ribosomal RNA gene on the sequence. To overcome this prob-
lem, INSD checks sequences against a ribosomal RNA BLAST 
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database in which all of the RNA genes are present on the plus 
strand. Thus, the annotators can be sure that new ribosomal 
RNA submissions are released to INSD with the RNA on the 
plus strand.

DDBJ, EMBL, and GenBank all have periodic releases of the 
sequences in the database. The sequences are available for down-
load by ftp from each of the three sites (ftp://ftp.ddbj.nig.ac.jp/
database/ddbj/, ftp://ftp.ebi.ac.uk/pub/databases/embl/, and 
ftp://ftp.ncbi.nih.gov/genbank/). In addition, NCBI makes avail-
able a complete RefSeq release (ftp://ftp.ncbi.nih.gov/refseq/ 
release/). Users can download the complete release and search 
the databases at their own site.

10. Accessing 
Sequence Data
10. Accessing 
Sequence Data

10.1. FTP10.1. FTP

Fig. 1.5. Graphical display of results for VecScreen BLAST analysis that shows that the query sequence has cloning vector 
sequence spanning nucleotides 1–66 and 1838–1860. The sequence alignments showing the similarity are also present 
on this output page (not shown).
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NCBI has a single search and retrieval system for all of the data-
bases that it maintains. This system is called Entrez (4) (http://
www.ncbi.nlm.nih.gov/gquery/gquery.fcgi). Users can query an 
individual database or all of the databases with a single query. The 
number of sequences in Entrez Nucleotide and Entrez Protein 
continue to grow at an exponential rate. The Entrez Nucleotide 
database is a collection of sequences from several sources, includ-
ing INSD and RefSeq. The Entrez Nucleotide database has divided 
into three subsets due to the rapid growth of the database. Recently, 
the EST and GSS divisions of GenBank have been separated from 
the rest of the sequences that are contained in the CoreNucleotide 
subset. The Entrez Protein database is a collection of sequences 
from a variety of sources, including SwissProt, PIR, PRF, PDB, 
and translations from annotated coding regions in INSD and Ref-
Seq. One significant advantage to the Entrez retrieval system is the 
network of links that join entries from each of the databases. 
A nucleotide sequence record can have links (Fig. 1.6) to the 
Taxonomy, PubMed, PubMed Central, Protein, Popset, Unigene, 
Gene, and Genome databases. In addition to those links, a pro-
tein record will also have links to Related Structures, Conserved 
Domains, and Related Domains. All of these links can be accessed 
through a pull-down Links menu. In addition, the GenBank flat 
file also displays hyperlinks to the Taxonomy and PubMed data-
bases. Links to external databases can be made by LinkOut or by 
db_xrefs within the entry. By taking advantage of these links, users 

10.2. Entrez Retrieval 
System
10.2. Entrez Retrieval 
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Fig. 1.6. Results page from Entrez Nucleotide Database query. The Links menu shows list of links to Related Squences, 
Entrez PopSet, Entrez Protein, PubMed, and Entrez Taxonomy from DQ988166, the first sequence retrieved by this query. 
This Links assist with the navigation through the NCBI site for additional information related to sequences.



 Managing Sequence Data 23

can make important scientific discoveries. These links are critical to 
discovering the relationship between a single piece of data and the 
information available in other databases.

In Entrez, sequence data can be viewed in a number of 
different formats. The default and most readable format is the 
GenBank flat file view. The graphical view, which eliminates most 
of the text and displays just sequence and biological features, is 
another display option. Other displays of the data, for instance 
XML, ASN.1, or FASTA formats, are intended to be more com-
puter readable.

Managing the constantly increasing amount of nucleotide and 
protein sequence data determined from different sources at dif-
ferent institutions requires the ability to accept, process, and dis-
play a standard, computable form of this data. To achieve this, 
DDBJ, EMBL, and GenBank work in collaboration (INSD) to 
collect and validate sequence data and make it easily available 
through public web sites. INSD defines standard elements for 
the sequence data records to ensure that the information can be 
submitted to and obtained from any of the collaborators’ web 
sites consistently, even when different tools are used to collect or 
display the data. The accuracy of the sequence data is confirmed 
by validation steps at both the submission and processing stages. 
This consistency and accuracy are maintained not only for typical 
nucleotide sequence data, but also for specialized data, such as 
EST, GSS, STS, HTG, complete genome, and Third Party Anno-
tation sequences. In addition, because sequence data are not static 
information, INSD provides methods for updating, correcting, or 
adding additional information to existing sequence records, either 
before or after they become publicly available. Finally, sequence 
data is not useful unless it is easily available to researchers in their 
labs and at their desks. Each INSD collaborator provides these 
public users with multiple tools to search, retrieve, and analyze 
sequence data in a variety of formats to allow such use.

 1. The DDBJ/EMBL/GenBank Feature Table: Definition, which 
can be found at http://www.insdc.org/files/documents/
feature_table.html, lists all allowable features and qualifiers 

11. Conclusion11. Conclusion

12. Notes12. Notes
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for a DDBJ/EMBL/GenBank record. This document gives 
information about the format and conventions, as well as 
examples, for the usage of features in the sequence record. 
Value formats for qualifiers are indicated in this document. 
Qualifiers may be:
a. Free text
b. Controlled vocabulary or enumerated values
c. Citation or reference numbers
d. Sequence
Other syntax related to the flat file is described in this document.
The document also contains reference lists for the following 
controlled vocabularies:
e. Nucleotide base codes (IUPAC)
f. Modified base abbreviations
g. Amino acid abbreviations
h. Modified and unusual Amino Acids
i. Genetic Code Tables
j. Country Names

 2. The web search and retrieval tool for the three members of 
INSD are:
getentry (http://getentry.ddbj.nig.ac.jp/) for DDBJ
SRS (http://srs.ebi.ac.uk/) for EMBL
Entrez (http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=Nucleotide) for NCBI.

 3. The NCBI Trace Archive (http://www.ncbi.nlm.nih.gov/
Traces/) is a permanent repository of DNA sequence chroma-
tograms (traces), base calls, and quality estimates for single-
pass reads from various large-scale sequencing projects. Data 
are exchanged regularly between the NCBI Trace Archive and 
the Ensembl Trace Server at the EBI and Sanger Institute in 
the United Kingdom.

 4. The Sequin and tbl2asn files can also be obtained by com-
mand line ftp. To get the latest version of Sequin or tbl2asn, 
ftp to ftp.ncbi.nih.gov, use “anonymous” as the login and 
your e-mail address as the password. Change directories 
to asn1-converters/by_program/tbl2asn for tbl2asn and 
sequin/CURRENT for Sequin. Set bin mode, and down-
load the appropriate version of the program for your operat-
ing system.

 5. When preparing a submission by Sequin or tbl2asn, informa-
tion about the sequence can be incorporated into the Defini-
tion Line of the fasta formatted sequence. FASTA format is 
simply the raw sequence preceded by a definition line. The 
definition line begins with a > sign and is followed immediately
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by the sequence identifier and a title. Information can be 
embedded into the title that Sequin and tbl2asn use to con-
struct a submission. Specifically, you can enter organism and 
strain or clone information in the nucleotide definition line 
and gene and protein information in the protein definition 
line using name-value pairs surrounded by square brackets. 
Example:
>myID [organism=Drosophila melanogaster] [strain= 
Oregon R] [clone=abc1].

 6. The Sequin and tbl2asn submission utilities contain valida-
tion software which will check for problems associated with 
your submission. The validator can be accessed in Sequin 
from the Search->Validate menu item or in tbl2asn using 
–v in the command line. If the submission has no problems, 
there will be a message that the validation test succeeded. 
If not, a window will pop up in Sequin listing the valida-
tion errors and warnings. In tbl2asn, validator messages are 
stored in a file with a .val suffix. In Sequin, the appropriate 
editor for making corrections can be launched by double-
clicking on the error message in the validator window. The 
validator includes checks for such things as missing organism 
information, incorrect coding region lengths, internal stop 
codons in coding regions, inconsistent genetic codes, mis-
matched amino acids, and non-consensus splice sites. If is 
important that submissions are checked for problems prior 
to submission to the database.

 7. Sequences in many of the functional divisions have key-
words that are related to that division. For example, EST 
sequences have an EST keyword. Similarly, GSS, STS, HTC, 
WGS, and ENV sequence records have keywords that are 
indicative of the GenBank division in which they belong. 
Furthermore, TPA sequences have keywords that identify the 
category, experimental or inferential, to which the TPA record 
belongs. For instance, TPA inferential records have three key-
words: “Third Party Annotation; TPA; TPA:inferential”. TPA 
sequence records that have experimental evidence are flagged 
with TPA:experimental. There are a number of sequencing 
projects that utilize keywords to flag sequences that belong to 
these projects. MGC, FLIcDNA, and BARCODE are three 
examples. Phase one and phase two HTG sequence records 
are in the HTG division of GenBank. These sequence records 
must contain two keywords, HTG and HTGS_PHASE1 or 
HTGS_PHASE2. Other keywords have been adopted by the 
HTGS submitting genome centers to indicate the status of 
the sequence. Phase 3 HTG sequences are considered fin-
ished and move to the appropriate taxonomic division. These 
sequences still retain the HTG keyword.
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 8. Updates to GenBank records can be submitted by e-mail 
to gb-admin@ncbi.nlm.nih.gov, through the BankIt update 
form (http://www.ncbi.nlm.nih.gov/BankIt/) or by Sequin-
MacroSend (http://www.ncbi.nlm.nih.gov/LargeDirSubs/
dir_submit.cgi) for large Sequin files. GenBank requests that 
update files are properly formatted. For publication or other 
general information, updates should be submitted as text in 
an e-mail.
a. Updates to source information (i.e., strain, cultivar, coun-

try, specimen_voucher) in a two-column tab-delimited 
table, for example:

acc. num. strain
AYxxxxxx 82
AYxxxxxy ABC

b. Updates to nucleotide sequence should be submitted 
with the complete new sequence(s) in fasta format.

>AYxxxxxx
cggtaataatggaccttggaccccggcaaagcggagagac
>AYxxxxxy
ggaccttgga ccccggcaaagcggagagaccggtaataat

c. Updates to feature annotation should be submitted as a 
tab-delimited five-column feature table. The first line of 
the table should read:
>Feature SeqId
The sequence identifier (SeqId) must be the same as that 
used on the sequence. The table_name is optional. Subse-
quent lines of the table list the features. Each feature is on 
a separate line. Qualifiers describing that feature are on the 
line below. Columns are separated by tabs.
Column 1: Start location of feature
Column 2: Stop location of feature
Column 3: Feature key
Line2:
Column 4: Qualifier key
Column 5: Qualifier value
For example:

>Feature gb|AYxxxxxx|AYxxxxxx
<1 1050 gene 
 gene ATH1
 gene_syn YPR026W
<1 1009 CDS 
 product acid trehalase
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Chapter 2

RNA Structure Determination by NMR

Lincoln G. Scott and Mirko Hennig

Abstract

This chapter reviews the methodologies for RNA structure determination by liquid-state nuclear magnetic
resonance (NMR). The routine production of milligram quantities of isotopically labeled RNA remains 
critical to the success of NMR-based structure studies. The standard method for the preparation of 
isotopically labeled RNA for structural studies in solution is in vitro transcription from DNA oligonucle-
otide templates using T7 RNA polymerase and unlabeled or isotopically labeled nucleotide triphosphates 
(NTPs). The purification of the desired RNA can be performed by either denaturing polyacrylamide gel 
electrophoresis (PAGE) or anion-exchange chromatography. Our basic strategy for studying RNA in 
solution by NMR is outlined. The topics covered include RNA resonance assignment, restraint collection,
and the structure calculation process. Selected examples of NMR spectra are given for a correctly folded 
30 nucleotide-containing RNA.

Key words: RNA, RNA synthesis, RNA purification, NMR, resonance assignment, structure 
determination.

RNA continues to surprise the scientific community with its rich 
structural diversity and unanticipated biological functions, includ-
ing catalysis and the regulation of gene expression. Knowledge 
of the three-dimensional structure of biological macromolecules 
is indispensable for describing and understanding the underlying 
determinants of molecular recognition. RNA-ligand recognition 
generally occurs by “induced-fit” rather than by rigid “lock-and-key” 
docking (1, 2). These recognition processes apparently necessitate 
conformational flexibility for which liquid state NMR spectroscopy 
is uniquely suited to answer important questions in this area by 
looking at dynamic ensembles of structures.

1. Introduction1. Introduction

Jonathan M. Keith (ed.), Bioinformatics, Volume I: Data, Sequence Analysis, and Evolution, vol. 452
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Large quantities of RNA can be routinely prepared from 
either DNA template-directed in vitro transcription using T7 
RNA polymerase (as well as T3 or SP6), or phosphoramidite-
based chemical synthesis. This chapter focuses on the in vitro
transcription method using T7 RNA polymerase, which is both 
more efficient, and cost effective (especially for RNAs >50 nucle-
otides) (3, 4). However, the disadvantages of in vitro transcrip-
tion include difficulties associated with the selective incorporation 
of isotopically labeled nucleotides or modified nucleotides, which 
are often functionally important.

The proliferation of RNA structure determinations using 
NMR spectroscopy is the combined result of:
 1. The availability of efficient methods for isotopic labeling of 

RNA molecules, which permits heteronuclear experiments 
to be performed that resolve the severe spectral overlap 
inherent in proton spectra of RNAs

 2. The rapid development of pulse sequences tailored for RNA 
spin systems facilitating many structure determinations

Severe spectral overlap in unlabeled RNA seriously limits the 
application of solution studies by NMR (Fig. 2.1). In contrast 
to the abundant 1H isotope, the naturally occurring nuclei 12C
and 14N cannot be readily studied with high-resolution NMR 
techniques. The production of isotopically labeled RNA remains 
critical to the success of these NMR-based structure studies (5)
and a variety of synthetic methods have been developed for the 
routine production of isotopically labeled nucleotides. Labeled 
NTPs for in vitro transcription reactions can be readily produced 

Fig. 2.1. 1D 1H spectrum of the 30 nucleotide HIV-2 TAR RNA recorded in H2O. Typical 1H
chemical shift ranges are indicated; solid black bars highlight exchangeable imino and 
amino protons, gray bars non-exchangeable base, and open bars non-exchangeable 
ribose protons.
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by enzymatic phosphorylation of ribonucleoside monophosphates
(NMPs) isolated from bacteria such as Methylophilus methylotrophus
or E. coli grown on 13C- and/or 15N enriched media. Optimized 
and detailed protocols for the preparation of labeled NTPs are 
published elsewhere and are not covered in this chapter (6–9).
Alternatively, a variety of isotopically labeled NTPs are commer-
cially available (e.g., Cambridge Isotope Labs, Sigma-Aldrich, 
Spectra Gases). Through the use of 13C and 15N isotopic labeling 
and multidimensional heteronuclear NMR experiments (Fig. 2.2),
studies of 15-kDa RNAs are commonplace and recent methodo-
logical developments have been reviewed (10–14).

New experiments to measure RNA orientation dependent dipo-
lar couplings (15–17) and cross-correlated relaxation rates 
(18, 19) have been developed, providing additional structural infor-
mation. Furthermore, NMR experiments have been introduced that 
allow the direct identification of donor and acceptor nitrogen atoms 
involved in hydrogen bonds (20, 21). The unambiguous identi-
fication of hydrogen bonds is important in nucleic acid structure 
determination, particularly for tertiary structural interactions; in the 
absence of such direct measurements, hydrogen-bonding partners 
can be misassigned, which will subsequently impact the precision of 
the resulting structure. All these recently introduced parameters 
are especially important for structure determination of RNA due to 
the low proton density, and because a significant number of protons 
are potentially involved in exchange processes.

We have applied most of the reviewed methods to the 
30-nucleotide human immunodeficiency virus (HIV)-2 transacti-
vation response element (TAR) RNA, one of the best-characterized

Fig. 2.2. 2D 1H,13C CT-HSQC spectrum of the TAR RNA. Typical ribose 13C chemical shift 
ranges are indicated. The spectrum was acquired such that the 13C5′ resonances are 
aliased in ω1 (−1*spectral width) to improve digital resolution.
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medium-sized RNA molecules. The TAR RNA hairpin loop 
interacts with Tat, one of the regulatory proteins encoded by 
HIV. Tat contains an arginine-rich motif responsible for binding 
to its target (22, 23). Formation of the Tat–TAR interaction is 
critical for viral replication. Peptides from the basic region of Tat 
retain the specificity of RNA binding and the amide derivative 
of arginine also binds specifically to TAR, although with greatly 
reduced affinity (24, 25). The nucleotides on TAR important for 
Tat binding are clustered around a three-nucleotide bulge, shown 
in Fig. 2.3. Upon binding of Tat, Tat peptides or argininamide, 
the TAR RNA undergoes a major conformational change in 
the bulge region. In the bound form, the essential nucleotides, 
U38, A27 and U23, form a base triple, shown in Fig. 2.3, which 
results in an opening of the major groove for peptide recogni-
tion (26–29). Additional solution studies of the TAR RNA in the 
absence of ligands have been performed (30, 31).

 1. Oligonucleotide Transcription Buffer (10×): 800 mM N-(2-
hydroxyethyl)-piperazine-N′-2-ethanesulfonic acid potas-
sium salt (K-HEPES), pH 8.1, 10 mM spermidine, and 0.1% 
(w/v) Triton X-100 prepared in water (see Note 1).

 2. Plasmid Transcription Buffer (10×): 400 mM Tris-HCl, pH 
8.1, 10 mM spermidine, 0.1% (w/v) Triton X-100 prepared 
in water.

2. Materials2. Materials
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A

Fig. 2.3. Sequence and secondary structure of the TAR RNA where the bold typeface 
highlights nucleotides important for Tat recognition. Upon binding of argininamide, the 
TAR RNA undergoes a conformational change in the bulge region where the essential 
nucleotides, U38, A27 and U23, form a base triple.
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 3. Solution of 50% (w/v) polyethylene glycol 8000 (PEG-
8000) prepared in water.

 4. 0.5 M ethylene diamine tetraacetic acid disodium salt 
(EDTA), pH 8.0, prepared in water (32).

 5. TE Buffer: 10 mM Tris-HCl, 1 mM EDTA, pH 8.0, prepared 
in water.

 6. DNA Transcription Promoter Oligonucleotide (60 µM) 
prepared in water (see Note 2).

 7. DNA Transcription Template Oligonucleotide (60 µM) pre-
pared in water (see Notes 3 and 4).

 8. Linearized Double-Stranded Plasmid DNA Template 
(≥3 mg/mL) prepared in TE Buffer (see Note 5).

 9. Solutions of 100 mM nucleotide-5′-triphosphates (ATP, UTP, 
GTP, and CTP) prepared in pH 7.0 water (see Note 6).

 10. Solution of 1 M dithiothreitol (DTT) prepared in water.
11. Solution of 1 M magnesium chloride (MgCl2) prepared in 

water.
 12. Bacteriophage T7 RNA polymerase (see Note 7).
13. Phenol/chloroform (1:1, v/v; Fisher Scientific) equilibrated 

with TE buffer.
14. Chloroform/i-amyl alcohol (29:1, v/v).
 15. Solution of 3 M Sodium Acetate, pH 5.3, prepared in water.
16. 100% Ethanol.
17. 80% Formamide Stop/Loading Buffer (2×): 80% (v/v) for-

mamide, 20% (v/v) 0.5 M (EDTA), pH 8.0, 0.02% (w/v) 
Bromophenol blue, and 0.02% (w/v) Xylene cyanol pre-
pared in water.

 18. 8M Urea prepared in water.

 1. Twenty Percent Acrylamide/Bisacrylamide Solution: 29:1 
(w/w) acrylamide/bisacrylamide, 8 M urea, 90 mM Tris-
borate (TBE), 2 mM EDTA, pH 8.1 (see Note 8).

 2. TBE Running Buffer: 90 mM TBE, 2 mM EDTA, pH 8.1, 
prepared in water.

 3. N,N,N′,N′-Tetramethyl-ethylenediamine (TEMED, Bio-Rad)
(see Note 9).

 4. Ammonium Persulfate Solution (APS): 30% (w/v) solution 
in water (see Note 10).

 5. Elutrap Electroelution System (with BT1 and BT2 mem-
branes, Schleicher & Schuell BioScience).

 6. CentriPrep concentrator with appropriate molecular weight 
cut-off (Millipore).

2.2. Polyacrylamide 
Gel Electrophoresis 
(PAGE)
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 7. NMR Buffer (e.g., 10 mM sodium phosphate, pH 6.5, 
50 mM NaCl, 0.1 mM EDTA, 0.02% NaN3, prepared in 90 
% H2O/10 % D2O).

 1. Low salt loading buffer, e.g., 20 mM potassium phosphate, 
pH 6.5, 0.5 mM EDTA, 0.02% sodium azide (NaN3), and 
100 mM KCl.

 2. High salt elution buffer, e.g., 20 mM potassium phosphate, 
pH 6.5, 0.5 mM EDTA, 0.02% NaN3, and 2 M KCl.

 3. Two HiTrap Q columns (Amersham Pharmacia).
 4. NAP25 column (Amersham Pharmacia).
 5. CentriPrep concentrator with appropriate molecular weight 

cut-off (Millipore).
 6. NMR Buffer (e.g. 10 mM sodium phosphate, pH 6.5, 

50 mM NaCl, 0.1 mM EDTA, 0.02% NaN3, prepared in 90 
% H2O/10 % D2O).

The yield of in vitro transcribed RNA can depend on a variety 
of factors, many of which are not fully understood. The rational 
sparse matrix method of duplicate 40–60 conditions in small-scale 
(10–50µL) transcription reactions can be easily employed to find 
the optimal reaction conditions. Trace amounts of α-32P-labeled
nucleotide (typically 5.0 × 105:1 [mol/mol] GTP:α-32P-GTP
(800 Ci/mmol), Perkin Elmer, Wellesley, MA) can be included 
to permit later radioanalytic quantitation of the transcription 
products. After four hours of incubation at 37°C the reactions 
are quenched with stop/loading buffer, and loaded directly to 
a 20% (29:1) denaturing polyacrylamide electrophoresis gel. 
The dried gel is phosphorimaged and the optimal conditions for 
transcription are chosen. The conditions can be chosen to either 
maximize the total yield of RNA, or in the case of isotopically 
labeled nucleotides, to maximize the yield of RNA per mole of 
input nucleotides. In addition, computational methods can assist 
in the interpretation of the experimental transcription optimiza-
tion data (33). Typically, before embarking on a large-scale syn-
thesis, a pilot 1 mL transcription reaction is carried out to verify 
the isolated yield. Transcription reactions are carried out on a 
scale of 1–40 mL, and typical isolated yields are 1–10 nmol RNA 
per mL of transcription.

Two strategies are available for preparing large quantities of 
RNA by in vitro run-off transcription (3, 4). Transcriptions for 
short RNAs (< 50 nucleotides) are carried out from synthetic 

2.3. Anion-Exchange 
Chromatography
2.3. Anion-Exchange 
Chromatography

3. Methods3. Methods

3.1. RNA Sample 
Preparation and 
Purification

3.1. RNA Sample 
Preparation and 
Purification



 RNA Structure Determination by NMR 35

DNA templates. The non-coding (top) strand and the template 
strand are purchased and gel purified on at least a 1-µmol scale for 
large-scale preparations. The preparation of RNA by  standard 
in vitro run-off transcriptions from synthetic DNA templates 
using T7 polymerase becomes inefficient if the RNA transcript 
is longer than ~60 nucleotides. Thus, larger RNA transcripts are 
typically synthesized using linearized plasmid DNA containing 
the target RNA coding sequence under a T7 promoter (Fig. 2.4).

RNA structural studies in solution by NMR require milligram 
amounts of the desired RNA of specific length and sequence. 
Traditionally, the purification of RNA transcripts is achieved by 
preparative denaturing (8 M urea) PAGE and subsequent elec-
troelution from the polyacrylamide gel matrix (34). This method 
separates large quantities of the desired RNA from unincorpo-
rated nucleotides and short, abortive transcripts with single nucle-
otide resolution, but tends to be laborious and time consuming. 
Additional disadvantages are the co-purification of water-soluble 
acrylamide impurities that are a result of incomplete polymeriza-
tion along with the RNA transcript. These impurities show a high 
affinity for RNA, and their complete removal by dialysis is diffi-
cult, necessitating either additional purification steps or extensive 
rinsing of the RNA transcript with water using an appropriate 
CentriPrep concentrator.

An alternative purification protocol employs anion-exchange 
chromatography (35, 36). Using this fast chromatography puri-
fication approach, the most time-consuming step for preparing 
large quantities of RNA for structural studies – PAGE purification
followed by electroelution – can be eliminated and sample 
contamination with acrylamide is circumvented. It should be 
noted that this technique also preserves the co-transcriptionally 
adopted folding state of the desired RNA. This is in marked 
contrast to denaturing PAGE purification, which is typically 
accompanied by several precipitation steps, and represents an 
important advantage in cases in which annealing procedures fail 
to reproduce a natively folded RNA target.

Fig. 2.4. Single and double-stranded DNA template sequences for the in vitro transcription of the HIV-2 TAR RNA (see
Note 2).
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 1. Transcription reactions are carried out under the following 
conditions: 80 mM K-HEPES (pH 8.1), 1 mM spermidine, 
10 mM DTT, 0.01% Triton X-100, 80 mg/mL PEG-8000, 
8–48 mM MgCl2, 2–6 mM each NTP, 0.3 µM template 
oligonucleotide DNA, 0.3 µM promoter oligonucleotide 
DNA, and ~2,000–4,000 units/mL T7 RNA polymerase 
(see Notes 11, 12, and 13).

 2. The reactions are incubated for 4 hours in a water bath at 
37°C.

 3. The reactions are quenched with the addition of 0.1 volume 
of 0.5 M EDTA (pH 8.0) (see Note 14).

 4. The reactions are extracted with an equal volume of phenol/
chloroform (1:1, v/v) equilibrated with TE buffer to remove 
T7 RNA polymerase prior to purification. The organic layer 
is further extracted with an equal volume of water to ensure 
all the RNA is removed from the reaction.

 5. The aqueous layers are combined and back extracted with an 
equal volume of chloroform/i-amyl alcohol (29:1, v/v) to 
remove any traces of phenol.

 6. The aqueous layer is ethanol precipitated with the addition 
of 0.1 vol of 3 M sodium acetate and 3.5 volumes cold 100% 
ethanol at −20°C.

 7. The crude RNA precipitate is collected by centrifugation, 
and resuspended in equal volumes of 80% Formamide Stop/
Loading Buffer and 8M urea.

 8. The sample is suitable for loading to a denaturing polyacry-
lamide gel.

 1. These instructions are general and are easily adaptable to 
other formats, and reaction scales, including minigels. It 
is critical that the glass plates for the gels are extensively 
cleaned with detergent (e.g., Alconox, Alconox, New York, 
NY), ammonium-based glass cleaner (e.g., Wendex, S.C. 
Johnson), and finally 95% ethanol.

 2. Prepare a polyacrylamide gel of the appropriate percent-
age, size, and thickness by mixing acrylamide/bisacrylamide 
solution, 1 µL APS and 1 µL TEMED per mL acrylamide/
bisacrylamide solution (32). The gel should polymerize in 
about 30 minutes.

 3. Once the gel polymerizes, carefully remove the comb and 
wash the wells with TBE running buffer.

 4. Place the gel into the appropriate gel running apparatus and 
add TBE running buffer to the upper and lower chambers of 
the gel unit.
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 5. Complete the assembly of the gel unit by connecting the 
power supply. The gel should be pre-run for at least 30 min-
utes at the appropriate voltage to allow thermal equilibration 
of the gel plates, prior to loading your samples.

 6. Run the RNA sample a sufficient time to resolve the n-1
nucleotide transcription product, typically two-thirds of the 
gel if the correct percentage polyacrylamide gel was used.

 7. Take the gel off the apparatus and carefully remove the gel 
from the plates, placing the gel on clear cellophane.

 8. The RNA can be easily visualized by UV256 shadowing, and 
excised from the gel with a clean razor blade or scalpel.

 9. Place the gel pieces into an Elutrap Electroelution System 
in TBE running buffer at 4°C, and the RNA is extracted 
from the gel in a manner outlined by the vendor. Typically, 
removing four fractions over a period of 6 hours at 200V is 
sufficient to extract RNA from even a twenty percent poly-
acrylamide gel.

10. The RNA containing fractions are combined and precipi-
tated by adding one-tenth the volume of 3M sodium ace-
tate, followed by 3.5 volumes of cold 100% ethanol. Place 
the solution at −20°C.

 11. The desired RNA is collected by centrifugation.
12. RNA samples are desalted using an appropriate CentriPrep 

concentrator and lyophilized.
13. The lyophilized RNA is dissolved in desired final volume 

(e.g., 500 µL for a standard 5-mm NMR sample tube) of 
NMR buffer.

14. The NMR sample is annealed in a manner appropriate to the 
specific RNA to form native structure (see Note 15).

 1. The transcription reaction is clarified by centrifugation 
(14,000g) to remove traces of precipitated pyrophosphate 
(see Note 16).

 2. Equilibrate two HiTrap Q columns (Amersham Pharmacia) 
in low salt loading buffer at room temperature.

 3. The transcription reaction mixture is applied to the equili-
brated columns.

 4. To separate the desired RNA from unincorporated nucle-
otides and plasmid DNA template, the loaded sample is 
typically eluted at a low flow rate of 1 mL/minute, in 3-mL 
fractions, with an increasing KCl gradient created by simulta-
neously decreasing the percentage of low salt loading buffer 
and increasing the percentage of high salt elution buffer being 
passed through the columns.

3.1.3. RNA Purification 
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 5. A common gradient for anion-exchange purification after 
transcription starts with 100% loading buffer to wash the 
columns, continues through a gradual climb from 0% to 
60% elution buffer for the first 2 hours, then to 100% elu-
tion buffer over another 5 minutes. A typical elution profile, 
detected at 260 nm, generally shows three major peaks: the 
first one containing unincorporated nucleotides and short, 
abortive transcripts; the second peak containing the desired 
RNA; and the last fractions containing the plasmid DNA 
template (see Note 17).

 6. Pure fractions are combined and concentrated using an 
appropriate CentriPrep (Millipore) concentrator.

 7. Concentrated fractions are desalted and buffer exchanged by 
passage through a NAP25 gel filtration column (Amersham 
Pharmacia) equilibrated with an NMR buffer. Alternatively, 
pure fractions can also be dialyzed into NMR buffer, and 
then concentrated with a CentriPrep concentrator.

 8. NMR samples are concentrated to desired final volumes 
(e.g., 500 µL for a standard 5-mm NMR sample tube) using 
an appropriate CentriPrep concentrator.

Assignment of RNA resonances is commonly achieved through 
identification of sequential base to ribose nuclear Overhauser 
effect (NOE) patterns seen in helical regions of nucleic acid struc-
ture (Fig. 2.5), in analogy to the procedure originally utilized for 
DNA studies in the 1980s (37). With the advent of isotopic labe-
ling for RNA, the basic NOE assignment approach was initially 
expanded to include multi-dimensional (3D and 4D) versions of 
the standard nuclear Overhauser effect spectroscopy (NOESY), 
which simplified assignment and identification of NOEs (38, 39).

3.2. NMR Resonance 
Assignment and 
Restraint Collection

3.2.1. Resonance 
Assignment Strategy

3.2. NMR Resonance 
Assignment and 
Restraint Collection

3.2.1. Resonance 
Assignment Strategy

5

Fig. 2.5. Schematic representation of a 5′-pApC-3′ dinucleotide with arrows indicat-
ing the intra- and interresidual distances used for NOE based sequential assignments 
of A-form helical conformations. A schematic 2D NOESY with cross-peaks correlating 
H1′(i)- H8(i), H1′(i)-H6(i+1), and H1′ (i+1)-H6(i+1) is shown.
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The NOE-based approach, however, relies on assumptions about 
structure and assignments, and is susceptible to errors from 
structural bias; methodology that achieves sequential assignment 
via unambiguous through-bond correlation experiments, as is the 
case for proteins, would be more ideal. Unfortunately, complete 
sequential assignments of even medium-sized RNA molecules 
using through-bond experiments such as HCP (see Note 18),
HCP-TOCSY (Total Correlation Spectroscopy) and HP-HET-
COR (Heteronuclear Correlation) are hampered by notoriously 
overlapped resonances and modest sensitivity. Thus, through-
bond assignment using HCP-like experiments is not feasible for 
larger RNA target molecules (~20 kDa). A hybrid approach with 
HCN and NOESY experiments is the optimal compromise to 
achieve unambiguous assignments. The HCN experiments can 
determine intranucleotide correlations within and between the 
base and ribose resonances, which will significantly reduce the 
ambiguity present in the NOESY-based assignment procedure. 
HCCH-based experiments are used to unambiguously assign 
crowded ribose, pyrimidine H5/H6, and adenosine spin sys-
tems. A variety of through-bond correlation experiments facili-
tate the assignments of exchangeable imino- and amino proton 
resonances linked to non-exchangeable base H6 and H8 protons 
(12, 40).

After sequence-specific assignments of RNAs are obtained, the 
structure determination is based on collecting sufficient numbers 
of proton-proton distance restraints utilizing NOESY experi-
ments. The structural analysis of the RNA backbone conforma-
tion is complicated by the lack of useful 1H-1H NOE distance 
restraints available that define the backbone torsions (Fig. 2.6).

3.2.2. NMR Restraints for 
Structure Determination
3.2.2. NMR Restraints for 
Structure Determination

Fig. 2.6. Schematic representation of a 5′-pGp-3′ mononucleotide with arrows indicating 
the various torsional degrees of freedom in the sugar-phosphate backbone, the pentose 
ring, and the glycosidic torsion.
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Potentially, the short distance restraints between pairs of pro-
tons (<6Å) can be complemented with torsion angle information 
accessible through J-coupling constants. Vicinal 3J scalar coupling 
constants can provide useful structural information about the 
sugar pucker, the β and ε backbone torsion angle conformations, 
as well as the glycosidic torsion χ, which defines the orientation 
of nucleobases with respect to the sugar moiety. In addition, 
NMR experiments have been introduced that allow the direct 
identification of donor and acceptor nitrogen atoms involved in 
hydrogen bonds. These recently introduced parameters are espe-
cially important for structure determination of RNA due to the 
low proton density.

However, there is a practical difficulty in defining RNA struc-
tures precisely by NMR because NOE and J-coupling–based 
structure calculation relies on either short range distance (<6Å) or 
local torsion angle information. RNAs often are elongated struc-
tures, which are better approximated as cylindrical rather than 
globular shapes. There is a lack of NOE information between 
distant ends of the molecule; as a result, the relative orientations 
of helical segments at opposite ends of the molecule are poorly 
defined. Recent advances in methodology help to alleviate or 
overcome this shortcoming (15, 41).

New experiments to measure orientational, rather than 
distance-dependent, dipolar couplings and cross-correlated 
relaxation rates have been developed, providing additional 
structural information. Methods have been developed to cre-
ate a slightly anisotropic environment for molecules tumbling 
in solution. This results in a small degree of alignment of the 
molecule, and the dipolar couplings no longer average to zero, 
while retaining the quality of high-resolution NMR spectra. 
The most promising system for NMR studies of partially 
aligned RNA is a Pf1 bacteriophage solution (16, 42). There 
is a narrow useful range of alignments suitable for high-resolution 
NMR studies. Higher phage concentrations are associated 
with stronger alignments and produce larger residual dipolar 
couplings, whereas lower concentrations correspond to lower 
degrees of ordering, reflected in smaller dipolar couplings. 
Too much alignment gives larger dipolar couplings, but also 
results in line broadening to such an extent that high-resolution 
NMR is not possible.

Residual dipolar couplings (RDC) data should be combined 
with the traditionally used NOE distance restraints and torsion 
angles derived from scalar J-couplings. The RDC data do not 
only provide additional information for a better definition of the 
global orientation of the three stems with respect to each other, 
but also carry valuable information on the dynamic properties of 
the RNA studied (43–45).
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 1. The main source of structural data will still be obtained from 
NOEs, which provide distance restraints for pairs of hydro-
gen atoms. Only short proton-proton distances in the range 
<6Å are accessible through NOESY-type experiments. Iden-
tification of NOEs will be facilitated by resolving the 1H,1H
NOE connectivities that are essential for determining the 
structure into three and four dimensions through detection 
of the heteronuclear (13C/15N) chemical shifts of the pro-
ton-attached nuclei.

 2. NOESY-type experiments should be recorded with vary-
ing mixing times (50–300 ms). NOE cross peaks obtained 
with long mixing times (>100 ms) are harder to quantitate 
and should be used with caution in structure calculations; 
however, they can tremendously help during the assignment 
process (see Notes 19, 20, 21, and 22).

 3. Imino proton resonances should be assigned sequence specifi-
cally at an early stage from water flip-back, WATERGATE-2D 
NOESY (46) spectra (τmix = 200 ms) to verify the construct 
integrity and secondary structure predictions (Fig. 2.7).

 4. The identification of NOEs can be further facilitated by 
utilizing isotope filtered/edited NOESY experiments in 
combination with nucleotide-specific isotopically labeled 
RNA (47).

 1. The ribose sugar geometry is defined by five alternating tor-
sion angles (ν0 through ν4). Usually, the ribose sugar adopts 
one of the energetically preferred C2′-endo (South) or C3′-
endo (North) conformations. A number of 1H,1H and 1H,13C
scalar couplings are available to determine the sugar pucker 
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Fig. 2.7. 2D 1H,1H water flip-back, WATERGATE NOESY (46) spectrum of the TAR RNA 
(τmix = 200 ms). Sequential assignments of the imino proton resonances by NOE con-
nectivities are indicated. The observable upper stem G and U residues are shown in bold 
gray and lower stem G and U residues in bold black.
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qualitatively with the combination of H1′-H2′ and H3′-H4′
coupling constants being the most useful for smaller RNAs. 
The 3J(H1′,H2′) vicinal coupling is >8 Hz for C2′-endo puck-
ers and ~1 Hz for C3′-endo puckers (Fig. 2.8), typically found 
in A-form helices (48–50). The opposite behavior is expected 
for the 3J(H3′,H4′) coupling constant with C2′-endo puck-
ers associated with small and C3′-endo puckers with relatively 
large coupling constant values (see Note 23).

 2. Measurement of the γ torsion is difficult due to the need for 
stereospecific assignments of the H5′ and H5′ proton reso-
nances. The two-bond C4′,H5′/H5′′ couplings can be used 
in conjunction with the vicinal H4′,H5′/H5′′ couplings to 
define γ (50, 51).

 3. Two heteronuclear vicinal 1H,13C couplings contain use-
ful information about the glycosidic torsion angle χ. The 
3J(H1′,C) couplings involving the C4,C8 carbons in purines 
and the C2,C6 carbons in pyrimidines, respectively, all depend 
on the χ torsion (50, 52). The preferred orientation around 
χ in A-form helix is anti, which makes the base accessible for 
commonly found hydrogen bonding interaction.

 4. The ε and β torsions can be determined by measuring a variety 
of 13C,31P and 1H,31P scalar couplings. Some of these torsions 
may be measured directly in 2D 1H,31P heteronuclear COSY 
(or HETCOR) experiments (53, 54) and non-refocused 1H,31P

Fig. 2.8. Ribose H1′-H2′ region of a 2D 1H,1H DQF (Double Quantum Filtered): COSY 
(129) spectrum of the TAR RNA. Assignments for the H1′-H2′ cross-peaks probing the 
individual sugar puckers are indicated. Residues shown in bold adopt either C2′-endo
or mixed C2′-endo/C3′-endo sugar puckers, resulting in more efficient magnetization 
transfer due to larger 3J(H1′,H2′) couplings. Weaker cross-peaks are associated with 
residues adopting C3′-endo sugar puckers, typically found in A-form helices. The inset 
shows a ribose ring; the arrow highlights the H1′- H2′ connection.
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HSQCs (Heteronuclear Single Quantum Coherences) if the 
phosphorus and proton resonances are sufficiently resolved 
(Fig. 2.9). However, both the ribose proton and phosphorus 
resonances involved are generally overlapped for even moder-
ate size RNAs. Accurate measurements for 13C,31P and 1H,31P
couplings can be obtained from both phosphorus-fitting of 
doublets from singlets (so-called P-FIDS) (55) or spin echo 
difference experiments (56–60). J-HMBC techniques can be 
applied to determine 3J(H,P) couplings (61). A quantitative 
version of the HCP experiment allows for quantitation of 
3J(C4′,P) (62).

 5. The α and ζ torsions are not accessible by J-coupling meas-
urements because the involved 16O nuclei have no magnetic 
moment. Some groups have used 31P chemical shifts as a 
guide for loose constraints on these torsions (63); however, 
the correlation between 31P chemical shifts and the phos-
phodiester backbone conformation is not well understood 
in RNA.

 6. Cross-correlated relaxation rates have been introduced to 
high-resolution NMR as a novel parameter for structure 
determination (18, 19). Such methods have been employed 
to gain information on the α and ζ torsions. The cross-cor-
related relaxation between a ribose 13C-1H dipole and the 
31P chemical shift anisotropy (CSA) carries valuable struc-
tural information about the phosphodiester conformation 
(64). Additionally, applications have been published where 
the cross-correlated relaxation between a 13C-1H dipole 

Fig. 2.9. Schematic representation of a 5′-NpN-3′ dinucleotide with arrows highlight-
ing the 3J(H3′,P) and 3J(H5′/5″,P) couplings associated with the torsion angles ε and 
β, respectively. 2D 1H,31P-HETCOR spectrum of the TAR RNA (53). Assignments for the 
H3′/H5′/H5″,31P-correlations along the 31P36 resonance are indicated in the spectrum 
and shown in bold in the secondary structure representation.
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and the glycosidic 15N CSA is utilized to collect informa-
tion about the glycosidic torsion angle χ (65, 66). Another 
example is the measurement of cross-correlated relaxation 
rates between neighboring 13C-1H dipoles within the ribose 
ring that can be used to define the sugar pucker. For RNAs, 
cross-correlated relaxation rates can be measured using an 
experiment that belongs to the HCCH class, and precisely 
determine the ribose sugar pucker without the need of any 
empirical Karplus parameterization (67). The resolution of 
this experiment can be further enhanced by a combination 
with a CC-TOCSY transfer (68) (see Note 24).

 1. One-bond dipolar couplings on the order of ±10–30 Hz can 
be introduced using ~15 mg/mL filamentous Pf1-phages as 
co-solutes, which creates an anisotropic environment for the 
RNA target molecule (see Note 25).

 2. For a directly bonded pair of nuclei with known distance, such 
as 1H-13C or 1H-15N in labeled RNA, angular restraints can be 
extracted from dipolar coupling data and incorporated during 
the structure calculation. Such one-bond dipolar couplings can 
be measured in a straightforward and sensitive manner. The 
difference between scalar J coupling constant values measured 
in isotropic and anisotropic media gives the residual dipolar 
coupling. Two NMR experiments are commonly performed 
to measure one bond 1D(H,C) RDC constants. Base C2-H2, 
C5-H5, C6-H6, and C8-H8 dipolar couplings are typically 
derived from analyzing peak positions in CT-TROSY and 
CT-antiTROSY experiments (69). For the ribose 1′–4′ one-
bond dipolar couplings, a J-modulated CT-HSQC should be 
acquired (70). A J-modulated 1H,15N-HSQC provides addi-
tional one bond 1D(H,N) RDC restraints (71).

 3. The determination of the phosphate backbone conformation 
in solution remains an experimentally intriguing problem. 
New parameters based on incomplete averaging in partially 
aligned RNA samples such as dipolar 1H,31P couplings (53,
72, 73) or 31P CSA (74) hold the promise to significantly 
impact on the precision of RNA structure determination in 
solution.

 1. Canonical base-pair hydrogen bonding of the Watson-Crick 
type is fundamental in all biological processes in which 
nucleic acids are involved. The partially covalent character 
of hydrogen bonds gives rise to measurable scalar spin-spin 
couplings of, for example, the type h2J(N,N) and h1J(H,N)
that represent important additional NMR parameters for the 
structure determination of nucleic acids in solution (20, 21).
In addition to the unambiguous determination of donor D 
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and acceptor A nuclei involved in hydrogen bond forma-
tion, the magnitude of the hJ(D,A) couplings reports on 
the hydrogen bond geometry and could potentially pro-
vide more precise distance information for structure calcu-
lations. The simultaneous identification of nuclei involved 
in hydrogen bonds and quantification of corresponding 
h2J(N,N) scalar couplings is accomplished using a HNN-
COSY (Correlation Spectroscopy) experiment or one of its 
variants (Fig. 2.10).

 2. Several groups have also reported measuring scalar couplings 
across hydrogen bonds in non-canonical base pairs and in 
tertiary structural interactions (75–81).

 3. The large two-bond 2J(H,N) scalar couplings within the purine 
bases allow reasonably efficient magnetization transfer dur-
ing INEPT (Insensitive Nuclei Enhancement by Polarization 
Transfer) delays (82). The independent assignments of poten-
tial nitrogen hydrogen bond acceptor sites using the intra-resi-
due 2J(H2,N1), 2J(H2,N3), and 2J(H8,N7) correlations for 
the purine residues in the RNA molecule can be obtained from 
a two-bond 2J(H,N) 1H,15N-HSQC experiment.

 4. The 2′-hydroxyl group plays fundamental roles in both the 
structure and function of RNA and is the major determi-
nant of the conformational and thermodynamic differences 

Fig. 2.10. 2D 1H,15N HNN-COSY of the TAR RNA. Assignments of the imino proton nitro-
gen correlations are indicated with the observable G and U residues shown in black 
and gray, respectively. Canonical base-pair hydrogen bonding of the Watson-Crick type 
correlates U N3 nitrogen donor sites with A N1 nitrogen acceptor sites (dashed line) 
and G N1 nitrogen donor sites with C N3 nitrogen acceptor sites (solid line). Typical 15N
chemical shift ranges are indicated; solid black bars highlight G N1 and C N3 nitrogens, 
while gray bars highlight A N1 and U N3 nitrogen chemical shift ranges.
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between RNA and DNA. In aqueous solution the rapid 
exchange of the hydroxyl proton with the solvent typically 
prevents its observation in RNA at room temperature by 
NMR. Most recently, a conformational analysis of 2′-OH
hydroxyl groups of the HIV-2 TAR RNA by means of NMR 
scalar coupling measurements in solution at low tempera-
ture has been reported (83, 84). Cross hydrogen bond scalar 
couplings involving two slowly exchanging 2′-OH hydroxyl 
protons were observed and analyzed in a frame shifting 
mRNA pseudoknot (85).

 1. A set of HNCCH- and HCCNH-TOCSY experiments have 
been developed that correlate the exchangeable imino and 
amino proton resonances with the non-exchangeable base 
resonances for the complicated spin systems of all four nucle-
otides as shown in Fig. 2.11 (81, 86–91).

 2. Complementary HCCH-COSY (92) and HCCH-TOCSY 
(93, 94) experiments are used to unambiguously assign pyri-
midine H5/H6 and adenosine spin systems.

 1. Optimized HCN-type pulse schemes for the through-bond 
correlation of ribose and base resonances utilizing MQ 
(multi-quantum)- instead of SQ (single-quantum)-evolution 
periods have been proposed and show significant  sensitivity
gains, essential for successful investigations of larger RNA 
systems (95, 96). Also, TROSY (Transverse Relaxation-
Optimized Spectroscopy) versions of HCN experiments 
have been successfully applied to RNA (97, 98).

3.2.7. Base-to-Base 
H(C/N)H-Type Correlation 
Experiments

3.2.7. Base-to-Base 
H(C/N)H-Type Correlation 
Experiments

3.2.8. Base-to-Ribose 
HCN-Type Correlation 
Experiments

3.2.8. Base-to-Ribose 
HCN-Type Correlation 
Experiments

Fig. 2.11. The four different aromatic nucleobases, uracil, cytosine, guanine, and 
adenine. Exchangeable imino and amino proton resonances and non-exchangeable 
aromatic proton resonances that are correlated in HNCCH- and HCCNH-TOCSY experi-
ments are shown as gray circles.
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 2. In favorable cases, magnetization can be transferred all the 
way through from the anomeric H1′ proton to the base 
H6/8 protons circumventing assignments through joint 
glycosidic N1/9 nitrogen chemical shift (99, 100).

 1. The magnetization transfer through the ribose proton spin 
systems is hampered due to the small 3J(H1′,H2′) vicinal 
coupling, present in most commonly populated A-form 
RNA, correlating the H1′ and H2′ resonances. Ribose pro-
ton spin system assignments from homonuclear 1H, 1H -
COSY- and TOCSY experiments can be obtained more 
readily using HCCH-COSY and -TOCSY experiments on 
ribose rings uniformly labeled with 13C, which allows mag-
netization transfer and chemical shift evolution on the C1′
to C5′ carbons (39, 101–104).

 2. The powerful hybrid HCCH-COSY-TOCSY (105, 106)
experiment can also be employed to unambiguously assign 
crowded ribose spin systems.

 1. For unlabeled RNAs, a number of relatively efficient 
1H,31P-multi-dimensional correlation schemes are avail-
able for sequential assignment of 31P and ribose 1H reso-
nances. Magnetization can be transferred from excited 31P
resonances to the 3J(H,P) scalar coupled ribose protons 
for detection using either COSY- (54) or heteronuclear 
TOCSY-type (107) transfer steps. The resulting two-
dimensional H3′/H5′/H5′′,31P-correlations can be con-
catenated with homonuclear 1H,1H NOESY or TOCSY 
experiments to transfer magnetization to potentially bet-
ter resolved resonances like H1′ or aromatic H8/H6 res-
onances (108, 109).

 2. A straightforward extend approach for 13C labeled RNAs is 
HCP correlation via sequential INEPT transfers (1H → 13C
→ 31P → 13C → 1H) (110, 111) correlating nuclei of adja-
cent nucleotides i and i + 1 (Fig. 2.12). Subsequent experi-
ments, HCP-CCH-TOCSY (112) and P(CC)H-TOCSY 
(113) combine the HCP and HCCH-TOCSY experiments 
and thus resolve relevant correlations on the better dispersed 
C1′/H1′ resonances.

 1. The intensity of NOESY cross peaks is approximately propor-
tional to the inverse of the averaged distance to the power of 
six, <1/rij

6>, assuming an isolated pair of proton spins i and j. 
For RNA NMR studies, NOE-derived distance restraints are 
often determined semi-quantitatively and placed into four 
categories: strong, medium, weak, and very weak NOEs. 
A conservative approach sets all the lower bounds to 1.8 Å 

3.2.9. Ribose-to-Ribose 
HCCH-Type Correlation 
Experiments

3.2.9. Ribose-to-Ribose 
HCCH-Type Correlation 
Experiments

3.2.10. Ribose-to-
Phosphate Backbone 
H(C)P-Type Correlation 
Experiments

3.2.10. Ribose-to-
Phosphate Backbone 
H(C)P-Type Correlation 
Experiments

3.3. Structure 
Calculation

3.3.1. Generation 
of Restraint File

3.3. Structure 
Calculation

3.3.1. Generation 
of Restraint File
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(van der Waals radius) with upper bounds ranging from 3.0 
Å for the most intense NOEs to 7.0 Å for the weakest NOEs 
found in H2O experiments.
CNS/Xplor syntax as compiled in distance restraint table 
(e.g., noe.tbl):

assign <1st atom-sel.> <2nd atom-sel.> <distance> <dminus> <dplus>

Example: proton H1 of residue 4 and proton H4′ of residue 
30 are separated by 2.4 ± 0.6 Å

assign (resid 4 and name H1) (resid 30 and name H4′) 2.4 
0.6 0.6

 2. J-coupling restraints can be implemented in two different ways 
during the structure determination. They can be introduced 
qualitatively by restricting a torsion angle in a loose manner 
(±30°) to one of the three staggered rotamers along the phos-
phodiester backbone, or defining the preferred ribose sugar 
pucker such as C2′-endo or C3′-endo. Alternatively, vicinal J-
couplings can be quantitatively related to a certain torsion angle 
using semi-empirical Karplus relations of the form: 3J = A cos2θ + 
B cosθ + C, where θ is the intervening torsion angle (40, 114).
CNS/Xplor syntax as compiled in torsion angle restraint 
table (e.g. torsion.tbl):
assign <1st atom-sel.> <2nd atom-sel.>
 <3rd atom-sel.> <4th atom-sel.> <real> <real> <real>
 <integer>

Fig. 2.12. Schematic representation of a 5′-NpN-3′ dinucleotide with arrows highlight-
ing the 3J(C4′,P) couplings associated with the torsion angles ε and β, respectively. 2D 
1H4′,13C4′ planes of a 3D HCP spectrum of the TAR RNA. Sequential assignments for 
the 1H4′,13C4′-correlations along the 31P resonance frequencies of C41, U40, C39, and U38 
are indicated (dashed lines) and shown in bold in the secondary structure representation.
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The four numbers are, respectively:
1. Force constant in kcal/(mole radians exp{exponent})
2. Equilibrium torsion angle in degrees
3. Range around the equilibrium value in degrees
4. Exponent for restraint calculation
Example: restrict residue 2 to North or C3′-endo sugar pucker
The sugar pucker can be defi ned with the 
following ribose torsion angles: ν1 = O4′-
C1′-C2′-C3′ and ν2 = C1′-C2′-C3′-C4′.
assign (resid 2 and name O4′) (resid 2 and 
name C1′)
  (resid 2 and name C2′) (resid 2 and

   name C3′) 
 1.0–20.0 10.0 2

assign (resid 2 and name C1′) (resid 2 and 
name C2′)
  (resid 2 and name C3′) (resid 2 and 

  name C4′) 1.0 35.0 5.0 2

 3. The size of dipolar couplings for an axially symmetric RNA 
molecule depends on the average value of an orientational 
function, ½(3cos2θ – 1), and the inverse cubic distance, 1/r3,
between the coupled nuclei. Here, the angle θ characterizes 
the axial orientation of the internuclear vector that connects 
the coupled nuclei with respect to the principal axis system of 
the molecular alignment tensor.
CNS/Xplor syntax as compiled in RDC table 
(e.g., dipolar.tbl):
A pseudomolecule OXYZ is defi ned with orthogo-
nal vectors OX, OY, and OZ. OXYZ reorients it-
self during the refi nement process to satisfy 
the experimentally measured RDC data against 
an energy penalty with its origin fi xed in 
space away from the target RNA molecule.
assign <external origin-sel.>
 <z-unit vector-sel.>
 <x-unit vector-sel.>
 <y-unit vector-sel.>
  <1st atom-sel.> <2nd atom-sel.> <RDC> 

<RDCerror
>

Example: An RDC value of 15.6 ± 0.6 Hz is 
measured for the one-bond interaction bet-
ween C1′ and H1′ of residue 2:
assign (resid 500 and name OO)
 (resid 500 and name Z)
 (resid 500 and name X)
 (resid 500 and name Y)
 (resid 2 and name C1′)
 (resid 2 and name H1′) 15.6000 0.6000
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 1. Most commonly, starting structures are calculated from ran-
domized RNA coordinates using solely energy terms from 
holonomic constraints such as geometric and non-bonded 
terms using restrained molecular dynamics calculations.

 2. To generate a family of structures consistent with the NMR 
data, the second step refines against the experimentally 
derived NOE distance and torsion restraints. We typically 
follow widely used approaches using restrained molecular 
dynamics in torsion angle space. Families of structures are 
generated from random extended structures in Xplor (115)
or CNS (116) using ab initio simulated annealing. Torsion 
angle dynamics (TAD) as implemented into, e.g., Xplor or 
CNS proved to be robust and have a higher convergence 
rate with respect to molecular dynamics in Cartesian coordi-
nate space (117).

 3. The generated structures are further refined against RDC 
data in a series of molecular dynamic runs with increasing 
dipolar force constants. Xplor and CNS provide modules for 
refinements against novel NMR parameters, for example, 
chemical shifts and anisotropic interactions such as RDCs 
and phosphorus chemical shift anisotropies.

 4. The lowest energy structures after simulated annealing and 
subsequent refinement against sets of RDCs collected are 
minimized using the AMBER module Sander (118). Due to 
more adapted force fields, AMBER yields better and more 
consistent results for nucleic acids (119).

 1. In evaluating the quality of a family of RNA NMR struc-
tures, a number of statistics can be evaluated: Root Mean 
Square Deviation (RMSD), number of NOE, RDC, and 
torsion restraints; residual distance, dipolar coupling, and tor-
sion violations; and the largest distance, dipolar coupling, 
and torsion violations. Typically, the distance restraints are 
further dissected into the number of inter-residue, intra-
residue, and inter-molecular NOEs.

 2. Useful RMSDs to consider include only regions of interest 
and are usually a more accurate descriptor of the quality of 
the structure than the overall global RMSD. Local RMSDs 
are given because the overall global RMSD can easily be in 
the 2.0–3.0 Å range, which might otherwise be indicative 
of poor convergence. Almost every RNA structure studied 
includes a region that is poorly defined, such as a disordered 
loop, terminal base pair, or a nucleotide without any inter-
nucleotide NOEs. This situation is comparable to protein 
NMR studies, which often neglect the N and C terminal 
ends of proteins because of the lack of structural data from 
these regions (see Note 26).

3.3.2. Molecular Dynamics 
Simulation
3.3.2. Molecular Dynamics 
Simulation

3.3.3. Structural Statistics3.3.3. Structural Statistics
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 3. In contrast to crystallographic B-factors, a general measure 
for the uncertainty in NMR-derived structures is not avail-
able. The commonly used RMSD, which is a measure for 
the precision of the data, tends to overestimate the accuracy 
of NMR structure ensembles and therefore is a problem-
atic measure for the uncertainty in the atomic coordinates. 
However, the measurement of a large set of RDCs permits 
cross-validation to assess the accuracy of NMR-derived 
atomic coordinates. Structure calculations should be car-
ried out omitting a randomly chosen subset of the RDC 
data while refining against the remaining RDCs. The accu-
racy of a family of RNA NMR structures is cross-validated 
by the agreement between the structures (which are used 
to back-calculate the RDCs) and the omitted RDC subset 
(120, 121). Alternatively, a comparison between calculated 
and observed 1H chemical shifts represents another possi-
bility for cross-validation of structures derived from NMR 
restraints (122).

 1. Unless stated otherwise, all solutions should be prepared in 
water that has a resistivity of 18.2 MΩ•cm and total organic 
content of less than five parts per billion. This standard is 
referred to as “water” in the text.

 2. The T7 promoter DNA strand used for oligonucleotide-based 
in vitro transcription should be of the following sequence: 5′-C 
TAA TAC GAC TCA CTA TAG-3′. The addition of a cytidine 
nucleotide 5′ of the T7 promoter sequence increases stability of 
the dsDNA and increases yields of product RNA (123).

 3. When designing the template strand of ssDNA, care should 
be taken at both the 5′, as well as 3′ end to insure optimal 
yields of RNA (3, 4). If the RNA product contains unaccept-
able 3′-end inhomogeneity, the template ssDNA can be pre-
pared with a 5′ non-hydrogen bonding nucleoside such as 
4-methylindole (124). Alternatively, the desired RNA can be 
transcribed with a 3′-end flanking sequence that folds into 
a hammerhead ribozyme that cleaves co-transcriptionally to 
yield a homogenous 3′-end with a 2′-, 3′-cyclic phosphate 
group (125, 126).

 4. 5′-YpA-3′ steps in single-stranded regions constitute hot 
spots for RNA hydrolysis and thus can contribute to long-
term chemical instability of an NMR sample. In favorable 
cases, these dinucleotide steps can be eliminated without 
compromising the RNA structure.

4. Notes4. Notes
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 5. In addition to Notes 2, 3, and 4, care should also be taken 
when designing a restriction enzyme site at the 3′-end of the 
plasmid for linearization. The remaining nucleotides should 
not only reduce 3′-end inhomogeneity, but also should be 
compatible with secondary or tertiary interactions that may 
be present in the RNA.

 6. It is recommended that nucleotide-5′-triphosphates should 
be prepared (127) or purchased (Sigma-Aldrich, St. Louis, 
MO; Cambridge Isotope Labs, Andover, MA) as the free 
acid, ammonium, or sodium salt whenever possible. In our 
hands, lower transcription yields can result when lithium, 
magnesium, triethylammonium, and cyclohexylammonium 
salts are used.

 7. T7 RNA polymerase is commercially available (e.g., New 
England Biolabs, Beverly, MA) but expensive. We prepare 
T7 RNA polymerase for transcriptions from an E. coli over-
expressing strain, several million Units at a time, approxi-
mately every 6 months.

 8. Unpolymerized acrylamide/bisacrylamide is a neurotoxin; 
therefore, care should be taken to avoid direct exposure.

 9. N,N,N,N-Tetramethyl-ethylenediamine (TEMED, Bio-Rad)
is best stored at room temperature in a desiccator.  Quality
of gels and rate of polymerization decline after open-
ing; therefore, purchasing small amounts of TEMED is 
 recommended.

 10. Ammonium persulfate (APS) is best stored at 4°C. Qual-
ity of gels and rate of polymerization decline over time; 
therefore, it is recommended that stocks should be pre-
pared frequently.

11. If plasmid DNA is used, one should substitute for plasmid 
Transcription buffer and omit the PEG-8000.

12. During the transcription reaction, there is a buildup of pyro-
phosphate that may slow down and in extreme cases inhibit 
the polymerase reaction by sequestering Mg2+. Transcription 
yields may be improved with the addition of 1 unit of inor-
ganic pyrophosphatase (IPP, Sigma-Aldrich) per milliliter of 
transcription. IPP hydrolyzes (insoluble) pyrophosphates. 
Care should be taken to optimize the transcription in the 
presence of IPP.

13. Transcription yields may also be improved with the addition 
of 10 units of RNAase Inhibitor (RNAsin, Promega Corp.) 
per milliliter of transcription. Care should be taken to opti-
mize the transcription in the presence of inhibitor.

14. When transcription optimizations are being performed, one 
can directly bring each reaction up in loading buffer and 
apply directly to the polyacrylamide gel.
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15. No general procedures for annealing can be given as condi-
tions can vary between RNAs. Typically, simple stem-loop 
structures such as the 30 nucleotide-containing TAR RNA 
can be properly annealed by heat denaturation (95°C for 
2 minutes) followed by a snap-cooling step (4°C for 10 min-
utes) under low to moderate salt conditions.

16. Transcription reactions can be extracted with an equal vol-
ume of phenol/chloroform (Fisher Scientific) equilibrated 
with TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to 
remove enzymes prior to anion-exchange chromatography.

 17. Anion-exchange FPLC gradient conditions should be opti-
mized to increase the resolution for each desired RNA target.

18. Names given to the through bond correlation experiments 
are derived from the series of nuclei through which magneti-
zation is transferred during the experiment.

19. Before embarking on a detailed and time-consuming NMR 
investigation of a chosen RNA, it is extremely important to 
optimize the sample conditions for acquisition of the various 
required NMR experiments. It is critical to determine at the 
outset if the system is suitable for a high-resolution NMR struc-
ture elucidation. Considerations include: the RNA construct, 
salt concentrations, pH, and buffer type and concentration.

20. The imino proton region of the proton NMR spectrum of 
an unlabeled RNA sample in H2O provides a sensitive diag-
nostic for this purpose. An example imino proton 1D spec-
trum for a correctly folded 30mer RNA is shown in Fig.
2.13. One peak should be observed for each Watson-Crick 
base pair in the molecule. Since the imino protons exchange 

Fig. 2.13. 1D jump-return echo 1H imino spectrum of the TAR RNA recorded in H2O. 
Assignments for observable G and U imino protons are indicated and shown in bold in 
the secondary structure representation.
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rapidly with the bulk H2O, the spectrum was recorded with a 
jump-return echo sequence that avoids presaturation, while 
providing most efficient water suppression (128). The pyri-
midine base protons can provide a valuable alternative, cir-
cumventing problems related to solvent exchange. H5-H6 
cross-peaks can be conveniently monitored in 2D TOCSY or 
COSY spectra; an example is given in Fig. 2.14.

21. The sample conditions are surveyed directly by NMR spec-
troscopy as a function of RNA and Mg2+ concentration in 
a phosphate buffer (10 mM Na- or K-phosphate, pH 6–7) 
with moderate monovalent salt (typically 50–100 mM NaCl 
or KCl) in order to identify constructs and solution condi-
tions suitable for a subsequent structure determination. The 
goal is to obtain the narrowest line width and best chemi-
cal shift dispersion for the observable imino and/or H5-H6 
base protons that report on secondary structure formation.

22. Potential problems with interpretation of obtained NOESY 
cross-peak intensities in terms of 1H-1H distances in struc-
ture calculations arise mainly from the phenomenon called 
spin diffusion. Spin diffusion causes a breakdown of the 
isolated spin pair approximation because other nearby pro-
tons provide competing indirect pathways for observing the 
direct NOE between the two protons. Spin diffusion effects 
play a role, especially when longer NOESY mixing times 
(>100 ms) are used. This usually leads to damped NOESY 
cross-peak intensities that build up through the direct path-
way, resulting in underestimated interproton distances. Addi-
tionally, multistep transfer pathways can occur, resulting in 
false NOE assignments. For example, the imino protons of 
guanines might show spin diffusion mediated NOEs to the 

Fig. 2.14. H5-H6 region of a 2D 1H,1H DQF-COSY (129) spectrum of the TAR RNA. Assign-
ments for the pyrimidine H5-H6 cross peaks are indicated and shown in bold in the 
secondary structure representation.
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non-exchangeable aromatic H5 and H6 protons of cytidines 
in Watson-Crick base pairs through the cytidine amino pro-
tons. However, in an early stage of the assignment procedure 
based on NOESY correlations, spin diffusion pathways can 
aid the identification of spin systems. Thus, for assignments 
it is recommended to analyze NOESY spectra acquired with 
shorter (~50 ms) and longer (~150 ms) mixing times.

23. Often ribose puckers are found with homonuclear 
H1′,H2′/H3′,H4′ coupling constants in the 3–6 Hz, 
indicative of conformational exchange between the C2′-
and C3′-endo puckers. This mixed conformation is  typically 
left unrestrained.

24. The quantitative analysis of scalar J-couplings, especially in 
the case of homonuclear 3J(H,H) couplings related to the 
ribose sugar pucker, becomes more and more difficult with 
increasing molecular weight. In contrast, the efficiency of 
cross-correlated relaxation pathways scales linearly with the 
overall correlation time of the molecule, which is related to 
its size. These new methods that exploit cross-correlated 
relaxation as a tool for structure determination should allow 
the characterization of conformations for larger RNA mol-
ecules, for which purpose J-coupling analysis is not feasible 
anymore.

25. Pf1-phage is commercially available (ASLA Biotech Ltd., 
Riga, Latvia). The phage solution can be exchanged into 
the NMR buffer by pelleting the phage in an ultracentrifuge 
(50K for 6 hours) and resuspending in NMR buffer multi-
ple times. Prior to use, the phage should be spun down and 
resuspended by gently shaking for 6 hours with the RNA 
sample used in the isotropic experiments.

26. It does not appear that there will be a simple and quick pro-
cedure for NMR assignment of RNA molecules. Neglecting 
the problems with sensitivity or overlap, complete assignment 
requires a large number of experiments, if all of the optimized 
sequences are performed (~4 experiments for the bases, ~3 
experiments to correlate the base resonances to the ribose, and 
~2–3 experiments to correlate the ribose resonances). This 
results in a very rough estimate of about 20 days measure-
ment time (assuming on average 2 days measurement time per 
experiment) for a RNA sample, with sample concentrations in 
the mM range and a molecular weight between 10 and 25 kDa, 
carried out on spectrometers with at least 500 MHz (proton 
resonance frequency). The subsequent data analysis and struc-
ture elucidation tends to be even more time consuming due to 
the absence of robust, automated procedures so that a com-
plete RNA structure analysis using procedures reviewed here 
can not be accomplished in less than 2 month.
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Chapter 3

Protein Structure Determination by X-Ray Crystallography

Andrea Ilari and Carmelinda Savino

Abstract

X-ray biocrystallography is the most powerful method to obtain a macromolecular structure. The 
improvement of computational technologies in recent years and the development of new and powerful 
computer programs together with the enormous increment in the number of protein structures depos-
ited in the Protein Data Bank, render the resolution of new structures easier than in the past. The aim of 
this chapter is to provide practical procedures useful for solving a new structure. It is impossible to give 
more than a flavor of what the x-ray crystallographic technique entails in one brief chapter; therefore, this 
chapter focuses its attention on the Molecular Replacement method. Whenever applicable, this method 
allows the resolution of macromolecular structures starting from a single data set and a search model 
downloaded from the PDB, with the aid only of computer work.

Key words: X-ray crystallography, protein crystallization, molecular replacement, coordinates 
refinement, model building.

The first requirement for protein structure determination by x-ray 
crystallography is to obtain protein crystals diffracting at high 
resolution. Protein crystallization is mainly a “trial and error” 
procedure in which the protein is slowly precipitated from its 
solution. As a general rule, the purer the protein, the better the 
chances to grow crystals. Growth of protein crystals starts from a 
supersaturated solution of the macromolecule, and evolves toward 
a thermodynamically stable state in which the protein is parti-
tioned between a solid phase and the solution. The time required 
before the equilibrium is reached has a great influence on the 
final result, which can go from an amorphous or microcrystalline 
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precipitate to large single crystals. The supersaturation conditions 
can be obtained by addition of precipitating agents (salts, organic 
solvents, and polyethylene glycol polymers) and/or by modify-
ing some of the internal parameters of the solution, such as pH, 
temperature and protein concentration. Since proteins are labile 
molecules, extreme conditions of precipitation, pH and tempera-
ture should be avoided. Protein crystallization involves three main 
steps (1):
 1. Determination of protein degree of purity. If the protein is 

not at least 90–95% pure, further purification will have to be 
carried out to achieve crystallization.

 2. The protein is dissolved in a suitable solvent from which it 
must be precipitated in crystalline form. The solvent is usu-
ally a water buffer solution.

 3. The solution is brought to supersaturation. In this step, 
small aggregates are formed, which are the nuclei for crystal 
growth. Once nuclei have been formed, actual crystal growth 
begins.

A crystal is a periodic arrangement of molecules in three-dimen-
sional space. Molecules precipitating from a solution tend to reach 
the lowest free energy state. This is often accomplished by pack-
ing in a regular way. Regular packing involves the repetition in the 
three space dimensions of the unit cell, defined by three vectors, 
a, b, and c, and three angles α, β, and γ between them. The unit 
cell contains a number of asymmetric units, which coincide with 
our macromolecule or more copies of it, related by symmetry 
operations such as rotations with or without translations. There 
are 230 different ways to combine the symmetry operations in a 
crystal, leading to 230 space groups, a list of which can be found 
in the International Table of Crystallography (2). Nevertheless, 
only 65 space groups are allowed in protein crystals, because the 
application of mirror planes and inversion points would change 
the configuration of amino acids from L to D, and D-amino acids 
are never found in natural protein.

Macromolecule crystals are loosely packed and contain large 
solvent-filled holes and channels, which normally occupy 40–60% 
of the crystal volume. For this reason, protein crystals are very 
fragile and have to be handled with care. In order to maintain its 
water content unaltered, protein crystals should always be kept in 
their mother liquor or in the saturated vapor of their mother liquor
(3, 4). During data collection (see the following) x-rays may cause 
crystal damage due to the formation of free radicals. The best 
way to avoid damage is crystal freezing. In cryo-crystallography 
protein crystals are soaked in a solution called “cryoprotectant” 
so that, when frozen, vitrified water, rather then crystalline ice, is 
formed. In these conditions, crystals exposed to x-rays undergo 
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negligible radiation damage. Cryo-crystallography usually allows 
a complete data set to be collected from a single crystal and results 
in generally higher quality and higher resolution diffraction data, 
while providing more accurate structural information. Normally, 
all measurements—both in house and using synchrotron radia-
tion—are performed at 100 K.

X-ray scattering or diffraction is a phenomenon involving both 
interference and coherent scattering. Two mathematical descrip-
tions of the interference effect were put forward by Max von 
Laue and W. L. Bragg (5, 6). The simplest description, known 
as Bragg’s law, is presented here. According to Bragg, x-ray dif-
fraction can be viewed as a process similar to reflection by planes 
of atoms in the crystal. Incident x-rays are scattered by crystal 
planes, identified by the Miller indices hkl (see Note 1) with 
an angle of reflection θ. Constructive interference only occurs 
when the path-length difference between rays diffracting from 
parallel crystal planes is an integral number of wavelengths. 
When the crystal planes are separated by a distance d, the path 
length difference is 2d·sinθ. Thus, for constructive interference 
to occur the following relation must hold true: nλ = 2d·sinθ. As 
a consequence of Bragg’s law, to “see” the individual atoms in 
a structure, the radiation wavelength must be similar to intera-
tomic distances (typically 0.15 nm or 1.5 Å).

X-rays are produced in the laboratory by accelerating a beam of 
electrons emitted by a cathode into an anode, the metal of which 
dictates the wavelength of the resulting x-ray. Monochromatiza-
tion is carried out either by using a thin metal foil that absorbs 
much of the unwanted radiation or by using the intense low-
order diffraction from a graphite crystal. To obtain a brighter 
source, the anode can be made to revolve (rotating anode gen-
erator) and is water-cooled to prevent it from melting. An alter-
native source of x-rays is obtained when a beam of electrons is 
bent by a magnet. This is the principle behind the synchrotron 
radiation sources that are capable of producing x-ray beams some 
thousand times more intense than a rotating anode generator. 
A consequence of this high-intensity radiation source is that data 
collection times have been drastically reduced. A further advan-
tage is that the x-ray spectrum is continuous from around 0.05 
to 0.3 nm (see Note 2).

In an x-ray diffraction experiment, a diffraction pattern is observed 
that could be regarded as a three-dimensional lattice, reciprocal 
to the actual crystal lattice (see Note 3 and Fig. 3.1). For a crystal 
structure determination the intensities of all diffracted reflections 
must be measured. To do so, all corresponding reciprocal lattice 
points must be brought to diffracting conditions by rotating the 
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lattice (i.e., by rotating the crystal) until the required reciprocal 
lattice points are on a sphere with radius 1/λ. It follows that an 
x-ray diffraction instrument consists of two parts:
 1. A mechanical part for rotating the crystal
 2. A detecting device to measure the position and the intensity 

of the diffracted reflections
For a protein structure determination the number of diffracted 
beams to be recorded is extremely high (of the order of 104–106)
and requires highly efficient hardware. The most efficient and fast-
est devices for data collection in protein crystallography are known 
as the image plate, and the CCD camera (see Notes 4 and 5). 
These instruments are much more sensitive and faster than an x-ray 
film, reducing considerably the time for exposure and data process-
ing and solving the time-consuming data collection problem.

Successful data integration depends on the choice of the experi-
mental parameters during data collection. Therefore, it is cru-
cial that the diffraction experiment is correctly designed and 
executed. The essence of the data collection strategy is to collect 
every unique reflection at least once. The most important issues 
that have to be considered are:
 1. The crystal must be single.
 2. In order to have a good signal-to-noise ratio, it is recom-

mended to measure crystal diffraction at the detector edge.
 3. The exposure time has to be chosen carefully: it has to be long 

enough to allow collection of high resolution data (see Note 6),
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Fig. 3.1. Ewald sphere. A diagrammatic representation of the generation of an x-ray 
diffraction pattern (see Note 3).
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but not so long as to cause overload reflections at low resolu-
tion and radiation damage.

 4. The rotation angle per image should be optimized: an angle 
too large will result in spatial overlap of spots, an angle too 
small will give too many partial spots (see Note 7).

 5. High data multiplicity will improve the overall quality of the 
data by reducing random errors and facilitating outlier iden-
tification.

Data analysis, performed with modern data reduction programs, 
is normally performed in three stages:
 1. Autoindexing of one image. The program deduces the lat-

tice type, the crystal unit cell parameters and crystal orienta-
tion parameters from a single oscillation image.

 2. Indexing of all images. The program compares the diffrac-
tion measurements to the spots predicted on the basis of the 
autoindexing parameters, assigns the hkl indices and calcu-
lates the diffraction intensities for each spot in all the col-
lected images.

 3. Scaling. The program scales together the data of all the col-
lected images and calculates the structure factor amplitudes 
for each reflection (identified by the indices hkl).

The goal of x-ray crystallography is to obtain the distribution of 
the electron density which is related to the atomic positions in 
the unit cell, starting from the diffraction data. The electronic 
density function has the following expression:

ρ π(x, y, z) = (1/V) F  ehkl hkl
2 i(hx+ky+lz)∑ −  [1]

where Fhkl are the structure factors, V is the cell volume and h,k,l 
are the Miller indices. F is a complex number and can be repre-
sented as a vector with a module and a phase. It is possible to 
easily calculate the amplitude of F directly from the x-ray scat-
tering measurements but the information on the phase value 
would be lost. Different experimental techniques can be used to 
solve the “phase problem,” allowing the building of the protein 
three-dimensional structure: multiple isomorphous replacement 
(MIR), multiple anomalous diffraction (MAD), and Molecular 
Replacement (MR). The last one can be performed by computa-
tional calculations using only the native data set.

The Molecular Replacement method consists in fitting a “probe 
structure” into the experimental unit cell. The probe structure 
is an initial approximate atomic model, from which estimates of 
the phases can be computed. Such a model can be the structure 
of a protein evolutionarily related to the unknown one, or even 
of the same protein from a different crystal form, if available. 
It is well known that the level of resemblance of two protein 
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structures correlates well with the level of sequence identity (7).
If the starting model has at least 40% sequence identity with the 
protein of which the structure is to be determined, the structures 
are expected to be very similar and Molecular Replacement will 
have a high probability of being successful. The chance of suc-
cess of this procedure progressively decreases with a decrease in 
structural similarity between the two proteins. It is not uncom-
mon that Molecular Replacement based on one search probe 
only fails. If this happens, the use of alternative search probes is 
recommended. Alternatively, a single pdb file containing super-
imposed structures of homologous proteins can be used. Lastly, 
if conventional Molecular Replacement is unsuccessful, models 
provided by protein structure prediction methods can be used as 
probes in place of the structure of homologous proteins.

The Molecular Replacement method is applicable to a large 
fraction of new structures since the Protein Data Bank (http://
www.rscb.org) (8) is becoming ever larger and therefore the 
probability of finding a good model is ever increasing.

Molecular replacement involves the determination of the ori-
entation and position of the known structure with respect to the 
crystallographic axes of the unknown structure; therefore, the 
problem has to be solved in six dimensions. If we call X the set of 
vectors representing the position of the atoms in the probe and X′
the transformed set, the transformation can be described as:

 X′ = [R] X + T [2]

where R represents the rotation matrix and T the translation vector. 
In the traditional Molecular Replacement method, Patterson func-
tions (see Note 8), calculated for the model and for the experimental 
data, are compared. The Patterson function has the advantage that 
it can be calculated without phase information. The maps calculated 
through the two Patterson functions can be superimposed with a 
good agreement only when the model is correctly oriented and 
placed in the right position in the unit cell. The calculation of the 
six variables, defining the orientation and the position of the model, 
is a computationally expensive problem that requires an enormous 
amount of calculation. However, the Patterson function proper-
ties allow the problem to be divided into two smaller problems: the 
determination of: (1) the rotation matrix, and (2) the translation 
vector. This is possible because the Patterson map is a vector map, 
with peaks corresponding to the positions of vectors between atoms 
in the unit cell. The Patterson map vectors can be divided into two 
categories: intramolecular vectors (self-vectors) and intermolecular 
vectors (cross-vectors). Self-vectors (from one atom in the molecule 
to another atom in the same molecule) depend only on the orienta-
tion of the molecule, and not on its position in the cell; therefore, 
they can be exploited in the rotation function. Cross-vectors depend 
both on the orientation of the molecule and on its position in the 
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cell; therefore, once the orientation is known, these vectors can be 
exploited in the translation function.

As mentioned, the rotation function is based on the observation 
that the self-vectors depend only on the orientation of the mol-
ecule and not on its position in the unit cell. Thus, the rotation 
matrix can be found by rotating and superimposing the model 
Patterson (calculated as the self-convolution function of the elec-
tron density, see Note 8) on the observed Patterson (calculated 
from the experimental intensity). Mathematically, the rotation 
function can be expressed as a sum of the product of the two 
Patterson functions at each point:

 F(R) = òvPcryst(u)Pself(Ru)du [3]

where Pcryst and Pself are the experimental and the calculated 
Patterson functions, respectively, R is the rotation matrix and r is 
the integration radius. In the integration, the volume around the 
origin where the Patterson map has a large peak is omitted. 
The radius of integration has a value of the same order of magni-
tude as the molecule dimensions because the self-vectors are more 
concentrated near the origin. The programs most frequently used 
to solve x-ray structures by Molecular Replacement implement 
the fast rotation function developed by Tony Crowther, who 
realized that the rotation function can be computed more quickly 
using the Fast Fourier Transform, expressing the Patterson maps 
as spherical harmonics (9).

Once the orientation matrix of the molecule in the experimental 
cell is found, the next step is the determination of the translation 
vector. This operation is equivalent to finding the absolute posi-
tion of the molecule. When the molecule (assuming it is correctly 
rotated in the cell) is translated, all the intermolecular vectors 
change. Therefore, the Patterson functions’ cross-vectors, calcu-
lated using the observed data and the model, superimpose with 
good agreement only when the molecules in the crystal are in the 
correct position. The translation function can be described as:

 T(t) = òvPcryst(u)Pcross(ut)du [4]

where Pcryst is the experimental Patterson function, whereas Pcross
is the Patterson function calculated from the probe oriented in 
the experimental crystal, t is the translation vector and u is the 
intermolecular vector between two symmetry-related molecules.

Once the phase has been determined (e.g., with the Molecu-
lar Replacement method) an electron density map can be cal-
culated and interpreted in terms of the polypeptide chain. If 
the major part of the model backbone can be fitted successfully 
in the electronic density map, the structure refinement phase 
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can begin. Refinement is performed by adjusting the model in 
order to find a closer agreement between the calculated and the 
observed structure factors. The adjustment of the model consists 
in changing the three positional parameters (x, y, z) and the iso-
tropic temperature factors B (see Note 9) for all the atoms in the 
structure except the hydrogen atoms. Refinement techniques 
in protein x-ray crystallography are based on the least squares 
minimization and depend greatly on the ratio of the number of 
independent observations to variable parameters. Since the pro-
tein crystals diffract very weakly, the errors in the data are often 
very high and more than five intensity measurements for each 
parameter are necessary to refine protein structures. Generally, 
the problem is poorly over-determined (the ratio is around 2) 
or sometimes under-determined (the ratio below 1.0). Differ-
ent methods are available to solve this problem. One of the 
most commonly used is the Stereochemically Restrained Least 
Squares Refinement, which increases the number of the obser-
vations by adding stereochemical restraints (10). The function 
to minimize consists in a crystallographic term and several stere-
ochemical terms:

Q= w {|F | |F |} + w (d d )hkl obs cal
2

D ideal model
2∑ − ∑ −

+ w (X X )  w (P P )T ideal model
2

P ideal model
2∑ − + ∑ −  [5]

+ w (E E ) + w (V V )NB min model
2

C ideal model
2∑ − ∑ −

where w terms indicate weighting parameters: “whkl” is the 
usual x-ray restraint, “wD” restrains the distance (d) between 
atoms (thus defining bond length, bond angles, and dihedral 
angles), “wT” restrains torsion angles (X), “wP” imposes the 
planarity of the aromatic rings (P), “wNB” introduces restraints 
for non-bonded and Van der Waals contacts (E), and finally 
“wC” restrains the configuration to the correct enantiomer 
(V). The crystallographic term is calculated from the differ-
ence between the experimental structure factor amplitudes Fobs
and the structure factor amplitudes calculated from the model 
Fcalc. The stereochemical terms are calculated as the difference 
between the values calculated from the model and the cor-
responding ideal values. The ideal values for the geometrical 
parameters are those measured for small molecules and pep-
tides. The refinement program minimizes the overall func-
tion by calculating the shifts in coordinates that will give its 
minimum value by the least squares fitting method. The clas-
sical least square method can produce overfitting artefacts by 
moving faster toward agreement with structure factor ampli-
tudes than toward correctness of the phases, because its shift 
directions assume the current model phases to be error-free 
constants. The refinement programs, developed more recently, 
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use the Maximum Likelihood method, which allows a repre-
sentation of the uncertainty in the phases so that the latter can 
be used with more caution (see Note 10).

Another popular refinement method is known as “simulated 
annealing” in which an energy function that combines the x-ray 
term with a potential energy function comprising terms for bond 
stretching, bond angle bending, torsion potentials, and van der 
Waals interactions, is minimized (11).

The parameter used for estimating the correctness of a 
model in the refinement process is the crystallographic R 
factor (Rcryst), which is usually the sum of the absolute dif-
ferences between observed and calculated structure factor 
amplitudes divided by the sum of the observed structure fac-
tor amplitudes:

 Rcryst = SçFobs – Fcalcç/SçFobsç [6]

Using Rcryst as a guide in the refinement process could be dan-
gerous because it often leads to over-fitting the model. For this 
reason, it is recommended to also use the so-called Rfree param-
eter, which is similar to Rcryst except for the fact that it is calcu-
lated from a fraction of the collected data that has been randomly 
chosen to be excluded from refinement and maps calculation. In 
this way, the Rfree calculation is independent from the refinement 
process and “phase bias” is not introduced. During the refine-
ment process both R factors should decrease reaching a value in 
the 10 to 20% range.

A key stage in the crystallographic investigation of an unknown 
structure is the creation of an atomic model. In macromolecu-
lar crystallography, the resolution of experimentally phased maps 
is rarely high enough so that the atoms are visible. However, 
the development of modern data collection techniques (cryo-
crystallography, synchrotron sources) has resulted in remarkable 
improvement in the map quality, which, in turn, has made atomic 
model building easier. Two types of maps are used to build the 
model: the “2Fo-Fc” map and the “Fo-Fc” map (where Fo indi-
cates the observed structure factor amplitudes and Fc the cal-
culated ones). The first one is used to build the protein model 
backbone and is obtained by substituting the term |2Fo-Fc| 
exp(-iϕcalc) (where ϕcalc is the phase calculated from the model) to 
the structure factor term in the equation of the electronic density 
(1). The “Fo-Fc” map helps the biocrystallographer to build dif-
ficult parts of the model and to find the correct conformation for 
the side chains. Moreover, it is used to add solvent and ligand 
molecules to the model. The “Fo-Fc” map is obtained by substituting
the term |Fo-Fc| exp(-iϕcalc) to the structure factor term in the 
equation of the electronic density.

1.4.1. Model Building1.4.1. Model Building
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 1. Hampton Research crystallization and cryoprotection kits.
 2. Protein more than 95% pure, at a concentration between 5 

and 15 mg/mL.
 3. VDX plates to set up crystallization trials by hanging drop 

method.
 4. Siliconized glass cover slides and vacuum grease.
 5. Magnetic crystal caps, and mounted cryo loops.
 6. Cryo tong and crystal wand.
 7. Dewars to conserve and transport crystals at nitrogen liquid 

temperature.

 1. Goniometer head.
 2. HKL suite (XDisplay, Denzo, and Scalepack) for macromo-

lecular crystallography.

 1. Linux boxes or Silicon Graphics computers.
 2. One of the following programs: AMoRe (freely available), 

MolRep (freely available), Xplor, CNS.

 1. Collaborative computational Project no. 4 interactive 
(CCP4i) suite containing programs to manipulate the data-
sets, solve the structure and refine the model and calculate 
the maps (freely available).

 2. One of the following programs: QUANTA (Molecular 
Structure, Inc.), Xfit, Coot, O to build the model. The last 
three are freely available.

 3. Refmac5 (CCP4i package), Xplor, CNS, programs to refine 
the model.

Precise rules to obtain suitable single-protein crystals have not been 
defined yet. For this reason, protein crystallization is mostly a trial 
and error procedure. This can be summarized in three steps:
 1. Check protein sample purity, which has to be around 90–95%.
 2. Slowly increase the precipitating agent concentration (PEGs, 

salts, or organic solvents) in order to favor protein aggregation.
 3. Change pH and/or temperature.
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It is usually necessary to carry out a large number of experiments 
to determine the best crystallization conditions, whereas using a 
minimum amount of protein per experiment. The protein con-
centration should be about 10 mg/mL; therefore, 1 mg of puri-
fied protein is sufficient to perform about 100 crystallization 
experiments. Crystallization can be carried out using different 
techniques, the most common of which are: liquid-liquid diffu-
sion methods, crystallization under dialysis and vapor diffusion 
technique. The latter is described in detail since it is easy to set up 
and allows the biocrystallographer to utilize a minimum protein 
amount. The vapor diffusion technique can be performed in two 
ways: the “hanging drop” and the “sitting drop” methods.
 1. In the “hanging drop” method, drops are prepared on a sili-

conized microscope glass cover slip by mixing 1–5 µL of pro-
tein solution with the same volume of precipitant solution. 
The slip is placed upside-down over a depression in a tray; 
the depression is partly filled (about 1ml) with the required 
precipitant solution (reservoir solution). The chamber is 
sealed by applying grease to the circumference of depression 
before the cover slip is put into place (Fig. 3.2A).

 2. The “sitting drop” method is preferable when the protein 
solution has a low surface tension and the equilibration rate 
between drop solution and reservoir solution needs to be 
slowed down. A schematic diagram of a sitting drop vessel is 
shown in Fig. 3.2B.

The parameters that can be varied include: nature and concentra-
tion of the precipitating agent; buffers to explore the entire pH 
range; additional salts and detergents; and others.

The most widely used cryomounting method consists of the sus-
pension of the crystal in a film of an “antifreeze” solution, held by 
surface tension across a small diameter loop of fiber, and followed 
by rapid insertion into a gaseous nitrogen stream. The cryopro-
tected solution is obtained by adding cryo  protectant agents such 
as glycerol, ethylene glycol, MPD (2-methyl-2,4-pentandiol), 
or low molecular weight PEG (polyethylene glycol) to the pre-
cipitant solution. The crystal is immersed in this solution for a 
few seconds prior to being flash-frozen. This method places little 
mechanical stress on the crystal, so it is excellent for fragile sam-
ples. Loops are made from very fine (~10 µm diameter) fibers of 
nylon. As some crystals degrade in growth and harvest solutions, 
liquid nitrogen storage is an excellent way to stabilize crystals for 
long periods (12). This system is particularly useful when preparing 
samples for data collection at synchrotron radiation sources, in that 
by minimizing the time required by sample preparation, it allows 
the biocrystalographer to use the limited time available at these 
facilities to collect data.

3.2. Crystal 
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Once the crystal is placed in the fiber loop, the latter must be 
attached to a goniometer head. This device has two perpendicu-
lar arcs that allow rotation of the crystal along two perpendicular 
axes. Additionally, its upper part can be moved along two per-
pendicular sledges for further adjustment and centering of the 
crystal. The goniometer head must be screwed on to a detector, 
making sure that the crystal is in the x-ray beam. In agreement 
with Bragg’s law, the crystal-to-detector distance should be as 
low as possible to obtain the maximum resolution together with 
a good separation between diffraction spots. Generally, a distance 
of 150 mm allows collection of high quality data sets with a good 
resolution (i.e., <2.0 Å) for protein crystals with unit cell dimen-
sions around 60–80 Å. Long unit cell dimensions (a, b, and/or c 
longer than 150 Å), large mosaicism (>1.0 degree) (see Note 11),
and large oscillation range (>1.0 degree), are all factors affecting 
spot separations and causing potential reflection overlaps.

Data collection is best performed interactively, with immedi-
ate data processing to get a fast feedback during data collection. 
This strategy avoids gross inefficiencies in the setup of the experi-
ment; for example, incomplete data sets and/or reflection over-
laps and/or large percentages of overloaded reflections.

The basic principles involved in the integrating diffraction data 
from macromolecules are common to many data integration pro-
grams currently in use. This section describes the data processing 
performed by the HKL2000 suite (13). The currently used data 
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Fig. 3.2. (A) “Hanging drop” crystallization method. A drop of protein solution is suspended from a glass cover slip above a 
reservoir solution, containing the precipitant agent. The glass slip is siliconized to prevent spreading of the drop. (B) “Sitting 
drop” crystallization method. A drop of protein solution is placed in a plastic support above the reservoir solution.
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processing methods exploit automated subroutines for indexing 
the x-ray crystal data collection, which means assigning correct 
hkl index to each spot on a diffraction image (Fig. 3.3).
 1. Peak search. The first automatic step is the peak search, which 

chooses the most intense spots to be used by the autoindex-
ing subroutine. Peaks are measured in a single oscillation 
image, which for protein crystals, requires 0.2–1.0 oscilla-
tion degrees.

 2. Autoindexing of one image. If autoindexing succeeds a 
good match between the observed diffraction pattern and 
predictions is obtained. The auto-indexing permits the iden-
tification of the space group and the determination of cell 
parameters (see Note 12 and Table 3.1). Other parameters 
also have to be refined. The most important are the crystal 

Fig. 3.3. Diffraction oscillation image visualized with the program Xdisp (HKL2000 suite) of the whole human sorcin 
collected at the ESRF synchrotron radiation source (Grenoble, France). The spot distances from the image centre are 
proportional to the resolution, so the spots at the image edge are the highest resolution spots.
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Table 3.1
Output of the Denzo autoindexing routine

Lattice

Metric
tensor
distortion
index

Best cell (symmetrized) 
Best cell (without  symmetry restrains)

Primitive cubic 60.04%  64.84
148.55

 64.96
148.55

315.85
148.55

90.09
90.00

 89.92
 90.00

 60.43
 90.00

I centred cubic 74.97%  65.32
236.68

322.35
236.68

322.36
236.68

20.04
90.00

 84.33
 90.00

 84.38
 90.00

F centred cubic 79.51% 335.11
326.68

322.36
326.68

322.56
326.68

23.24
90.00

157.19
 90.00

157.36
 90.00

Primitive
rhombohedral

 2.75% 322.35
320.18
 64.90

322.34
320.18
 64.90

315.85
320.18
953.96

11.69
11.62
90.00

 11.60
 11.62
 90.00

 11.57
 11.62
120.00

Primitive
hexagonal

 0.22%  65.32
 65.08

 64.84
 65.08

315.85
315.85

89.92
90.00

 90.17
 90.00

120.12
120.00

Primitive
tetragonal

13.37%  64.84
 64.90

 64.96
 64.90

315.85
315.85

90.09
90.00

 89.92
 90.00

 60.43
 90.00

I centred 
tetragonal

13.68%  64.84
 64.90

 64.96
 64.90

634.88
634.88

87.11
90.00

 92.88
 90.00

 60.43
 90.00

Primitive
orthorhombic

13.37%  64.84
 64.84

 64.96
 64.96

315.85
315.85

90.09
90.00

 89.92
 90.00

 60.43
 90.00

C centred 
orthorhombic

 0.09%  65.32
 65.32

112.17
112.17

315.85
315.85

90.01
90.00

 89.83
 90.00

 90.13
 90.00

I centred 
orthorhombic

13.68%  64.84
 64.84

 64.96
 64.96

634.88
634.88

87.11
90.00

 92.88
 90.00

 60.43
 90.00

F centred 
orthorhombic

 2.37%  65.32
 65.32

112.17
112.17

634.88
634.88

89.99
90.00

 95.73
 90.00

 90.13
 90.00

Primitive
monoclinic

 0.07%  64.84
 64.84

315.85
315.85

 64.96
 64.96

90.09
90.00

119.57
119.57

 90.08
 90.00

C centred 
monoclinic

 0.05%  65.32
 65.32

112.17
112.17

315.85
315.85

89.99
90.00

 90.17
 90.17

 90.13
 90.00

Primitive triclinic  0.00%  64.84  64.96 315.85 90.09  90.08 119.57

Autoindex
unit cell

 65.24  65.24 315.85 90.00  90.00 120.00

Crystal rotx, 
roty, rotz

−8.400  55.089  70.885

Autoindex
Xbeam, Ybeam

94.28  94.90

The lattice and unit cell distortion table, and the crystal orientation parameters are shown. These results were obtained
for the F112L human mutant sorcin (soluble Resistance related calcium binding protein) (25).
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and detector orientation parameters, the center of the direct 
beam and the crystal-to-detector distance.

 3. Autoindexing of all the images. The autoindexing proce-
dure, together with refinement, is repeated for all diffraction 
images.

Data are processed using a component program of the HKL2000 
suite called Denzo. The scaling and merging of indexed data, as 
well as the global refinement of crystal parameters, is performed 
with the program Scalepack, which is another HKL2000 suite 
component. The values of unit-cell parameters refined from a sin-
gle image may be quite imprecise. Therefore a post-refinement 
procedure is implemented in the program to allow for separate 
refinements of the orientation of each image while using the same 
unit cell for the whole data set. The quality of x-ray data is first 
assessed by statistical parameters reported in the scale.log file. The 
first important parameter is the I/σ (I: intensity of the signal, σ the 
standard deviation), that is the signal-to-noise ratio, which is also 
used to estimate the maximum resolution. The second parameter 
is χ2, which is closely related to I/σ (see Note 13). The program 
tries to bring χ2 close to 1.0 by manipulating the error model. 
Another important parameter is Rsym, which is a disagreement 
index between symmetry related reflections and of which the aver-
age value should be below 10% (see Note 14). The output of the 
data processing procedure is a file with suffix .hkl, containing all 
the measured intensities with their relative σ values and the corre-
sponding hkl indices. Using the program Truncate implemented in 
the CCP4i suite (14), it is possible to calculate: the structure factor 
amplitudes from the intensities by the French and Wilson method 
(15), the Wilson plot to estimate an overall B factor (see Note 9), 
and an absolute scale factor, and intensity statistics to evaluate the 
correctness of the data reduction procedure. The truncated output 
data are stored in a file that usually has the extension.mtz.

 1. Search model. The first operation is searching the databases 
for a probe structure similar to the structure to be solved. 
Since we do not know the structural identity of our pro-
tein with homologous proteins we use sequence identity as 
a guide. Proteins showing a high degree of sequence simi-
larity with our “query” protein can be identified in protein 
sequence databases using sequence comparison methods such 
as BLAST (16). The protein of known three-dimensional 
structure showing the highest sequence identity with our 
query protein is generally used as the search model.

 2. Files preparation. The Pdb file of the search probe has to 
be downloaded from the Protein Data Bank. The file has to be 
manipulated before molecular replacement is performed. 
The water molecules as well as the ligand molecules have to 
be removed from the file. The structure can be transformed 

3.5. Molecular 
Replacement
3.5. Molecular 
Replacement
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into a polyalanine search probe to avoid model bias during 
the Molecular Replacement procedure (see Note 15). The 
other file needed to perform the Molecular Replacement 
is the file with extension .mtz resulting from earlier data 
processing (see Section 3.4.), containing information about 
crystal space group, cell dimensions, molecules per unit cell 
and a list of the collected experimental reflections.

 3. Molecular Replacement. The Molecular Replacement proce-
dure consists in Rotation and Translation searches to put the 
probe structure in the correct position in the experimental 
cell. This operation can be done using different programs, 
the most common of which is AMoRe (17). This chapter 
describes briefly the use of MolRep (18), one of the most 
recent programs to solving macromolecular structures by 
Molecular Replacement. This program belongs to the CCP4i 
suite and is automated and user friendly. The program per-
forms rotation searches followed by translation searches. The 
only input files to upload are the .mtz and the .pdb files. The 
values of two parameters have to be chosen: the integration 
radius and the resolution range to be used for Patterson cal-
culation. In the rotation function, only intramolecular vec-
tors need to be considered. Since all vectors in a Patterson 
function start at the unit cell axes origin, the vectors closest 
to the origin will in general be intramolecular. By judiciously 
choosing a maximum Patterson radius, we can improve the 
chances of finding a strong rotation hit. Usually a value of 
the same order of magnitude as the search probe dimensions 
is chosen. Regarding the second parameter, high-resolution 
reflections (>3.5 Å) will differ substantially because they are 
related to the residue conformations. On the other hand, 
low-resolution reflections (<10Å) are influenced by crystal 
packing and solvent arrangement. Thus, the resolution range 
that should be used is usually within 10–3.5Å.

 4. Output files. The output files to check are: the file with 
extension .log that lists all the operations performed by the 
program, and the coordinates file representing the MR solu-
tion, that is the model rotated and translated in the real cell, 
in pdb format. As shown in Table 3.2, after the rotational 
and translational searches are performed, the program lists 
all the possible solutions (see Note 16) followed by the rota-
tion angles and the translation shifts necessary to position 
the model in the real cell, the crystallographic R factors and 
finally the correlation coefficients (see Note 17). The first 
line of Table 3.2 represents a clear solution for a MR prob-
lem. In fact the crystallographic R factor is below 0.5, and 
the correlation coefficient is very high (75.9%). Moreover, 
there is a jump between the first possible solution (first line) 
and the second possible solution (second line).
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Several programs can be used to perform structure refinement. 
The most common are: CNS written by Brünger (19), which uses 
conventional least square refinement as well as simulated anneal-
ing to refine the structure; and REFMAC5 (CCP4i suite) writ-
ten by Murshudov (20) that uses maximum likelihood refinement. 
Although CNS and many other programs have been used with 
success, this chapter illustrates the use of REFMAC5 implemented 
in CCP4i because it provides a graphic interface to compile the 
input files; this feature is particularly helpful for beginners.
 1. Rigid body refinement. First, the initial positions of the 

molecules in the unit cell and in the crystal cell provided 
by MR procedures have to be refined. For this purpose, 
rigid body refinement should be performed. This method 
assigns a rigid geometry to parts of the structure and the 
parameters of these constrained parts are refined rather 
than individual atomic parameters. The input files to be 
uploaded are the MR solution and the .mtz file containing 
the experimental reflections. The resolution at which to 
run rigid body  refinement has to be specified (in general 
the rigid body refinement should start at the lowest reso-
lution range) and the rigid entity should be defined (this 
can be an entire protein, a protein subunit or a protein 
domain). To define the rigid entities in REFMAC5, simply 
select the chain and protein regions that are to be fixed.

3.6. Structure 
Refinement
3.6. Structure 
Refinement

Table 3.2
Output of the MolRep program after rotation and translation searches

alpha beta gamma Xfrac Yfrac Zfrac TF/sig R-fac Corr

Sol_TF_7 1 32.27 84.87 78.84 0.824 0.498 0.091 65.34 0.333 0.759

Sol_TF_7 2 32.27 84.87 78.84 0.324 0.041 0.092 25.76 0.482 0.478

Sol_TF_7 3 32.27 84.87 78.84 0.324 0.454 0.091 24.18 0.477 0.481

Sol_TF_7 4 32.27 84.87 78.84 0.324 0.498 0.016 23.57 0.483 0.467

Sol_TF_7 5 32.27 84.87 78.84 0.422 0.498 0.091 23.37 0.479 0.478

Sol_TF_7 6 32.27 84.87 78.84 0.324 0.498 0.325 23.12 0.482 0.471

Sol_TF_7 7 32.27 84.87 78.84 0.238 0.498 0.092 23.01 0.481 0.473

Sol_TF_7 8 32.27 84.87 78.84 0.324 0.498 0.372 22.99 0.479 0.475

Sol_TF_7 9 32.27 84.87 78.84 0.324 0.498 0.400 22.97 0.480 0.473

Sol_TF_7 10 32.27 84.87 78.84 0.324 0.000 0.196 22.93 0.490 0.456

The present results (data not published) have been obtained for the protein Dps (Dna binding proteins, from 
starved cells from Listeria monocytogenes using as search model the Dps from Listeria innocua (Pdb code 1QHG).
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 2. Output files. The output files are: (a) the .log file that con-
tains a list of all the operations performed, statistics about 
the geometrical parameters after each refinement cycle, crys-
tallographic R factor and R free factor values, and finally the 
figure of merit (see Note 18 and Table 3.3); (b) the .pdb 
file containing the refined coordinates of the model; (c) the 
.mtz file containing the observed structure factors (Fobs), the 
structure factor amplitudes calculated from the model (Fcalc)
and the phase angles calculated from the model.

 3. Coordinates and B factors refinement. The program REF-
MAC 5 refines the x, y, z and B parameters using the maxi-
mum likelihood method. As for the rigid body refinement, 
the input files are the .mtz file containing the Fobs and the 
.pdb file containing the coordinates of the model. It is also 
necessary to restrain the stereochemical parameters using 
the maximum likelihood method. It is possible to choose a 
numerical value for the relative weighting terms or, more eas-
ily, to choose a single value for the so-called “weight matrix” 
that allows the program to restrain all the stereochemi-
cal parameters together. The value of the “weight matrix” 
should be between 0.5, indicating loose stereochemical 
restraints, and 0, indicating strong stereochemical restraints 
which keep geometrical parameters of the macromolecules 

Table 3.3
Summary of 10 cycles of DpsTe (see Note 22) coordinate refinement using REF-
MAC5. The Rfact, Rfree, Figures of Merits (FOM) and root mean square deviation values 
of some stereo-chemical parameters are shown

Ncyc Rfact Rfree FOM LLG rmsBOND rmsANGLE rmsCHIRAL

 0 0.213 0.213 0.862 1165259.2 0.004 0.734 0.055

 1 0.196 0.210 0.865 1151022.5 0.010 1.022 0.074

 2 0.191 0.209 0.867 1146576.9 0.011 1.106 0.080

 3 0.188 0.209 0.868 1144297.8 0.011 1.144 0.083

 4 0.187 0.209 0.869 1142920.2 0.011 1.166 0.085

 5 0.186 0.209 0.870 1142088.8 0.011 1.178 0.086

 6 0.185 0.209 0.870 1141496.4 0.011 1.186 0.087

 7 0.184 0.209 0.870 1141031.5 0.011 1.190 0.088

 8 0.184 0.209 0.871 1140743.6 0.011 1.192 0.088

 9 0.184 0.209 0.871 1140461.8 0.011 1.195 0.088

10 0.183 0.209 0.871 1140311.0 0.011 1.196 0.088
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near the ideal values. In REFMAC5 NCS (see Note 19)
restraints can also be used for refinement.

After the Molecular Replacement and the first cycles of coordi-
nates refinement, only a partial model has been obtained. In this 
model, the side chains are absent, and often parts of the model do 
not match the electronic density map. Therefore, the building of 
the first structural elements is followed by refinement cycles that 
should lead to an improvement on the statistics (i.e., the R factor 
has to decrease and the figure of merit has to increase). The most 
common programs used for model building are QUANTA, 
COOT (21), O (22), and XFIT (XTALVIEW PACKAGE) (23).
XFIT and COOT permit direct calculation of density maps. 
Two maps are necessary to build a model: the 2Fo-Fc map con-
toured at 1σ which is used to trace the model and the Fo-Fc map 
contoured at 3σ, which is necessary to observe the differences 
between the model and the experimental data.
 1. Starting point. First find a match between protein sequence 

and the 2Fo-Fc density map. If the phases are good, this 
operation should not be too difficult. The electron density 
map should be clear (especially if it has been calculated from 
high-resolution data) and should allow the identification of 
the amino acids (see Note 20) (Fig. 3.4).

3.7. Model Building3.7. Model Building

Fig. 3.4. Initial Electronic density map of Dps from Thermosynechococcus elongatus (see Note 22) calculated after 
Molecular Replacement. Cα trace of the model is superimposed on the map. The electronic density of a Trp residue and 
a Tyr residue are easily recognizable in the map.
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 2. Initial building. Once the first residue has been identified 
and fitted into the electron density map, model building can 
be performed by fitting the whole protein sequence residue 
by residue in the map.

 3. Building of the unfitted structure elements. If the initial 
model does not contain all the protein residues, it is pos-
sible to build the main chain of the protein region missing 
from the model “ab initio,” using one of the programs cited 
above. As an example, with XFIT it is possible to add Cα
atoms to the model after or before a selected residue. After 
a Cα is inserted in the electron density map in the correct 
position, it is possible to substitute the Cα with the desired 
amino acid, which is automatically bound to the rest of the 
protein. The main chain of the missing protein region can 
also be constructed using the program database after a suit-
able piece of structure has been built.

 4. Omit map. If a part of the structure does not match the map, 
this means that it is built incorrectly. Thus it is possible to use, 
as a major strategy for overcoming phase bias, the so-called 
“omit maps”. In practice, the model region that has to be 
refitted is removed and the maps are recalculated after a few 

Fig. 3.5. Electronic density map contoured at 1.0 σ of Dps from Thermosynechococcus
elongatus (see Note 22) calculated after many REFMAC5 refinement cycles. The final 
structure (thick lines) solved at 1.8 Å resolution is superimposed on the map.
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refinement cycles. This method allows the phases calculated 
from the rest of the model to phase the area of interest with 
no bias from parts of the model left out.

 5. Optimization. At this stage, large sections of the structure 
should be approximately fitting the electron density map 
(Fig. 3.5). The next step is the choice of the correct side-
chain rotamers. This operation may be done by hand or by 
using real space refinement tools. Finally, water molecules 
and ions and/or ligands bound to the protein have to be 
identified and added to the model. For this purpose only the 
Fo-Fc map contoured at 3σ is used. The water molecules can 
be added either manually or automatically (see Note 21).

 1. The intercepts of the planes with the cell edges must be frac-
tions of the cell edge. Therefore, cell intercepts can be at 
1/0 (= ∞), 1/1, 1/2, 1/3 … 1/n. The conventional way of 
identifying these sets of planes is by using three integers that 
are the denominators of the intercepts along the three axes 
of the unit cell, hkl, called Miller indices. If a set of planes 
had intercepts at 1/2, 1/3, and 1/1, then the planes would 
be referred to as the (2 3 1) set of planes.

 2. Another advantage of synchrotron radiation is its tunability, 
which allows the user to select radiation wavelengths higher 
or lower than 1.5418 Å (copper radiation). Collection of 
data at wavelengths below 1.5418Å results in a lower signal-
to-noise ratio.

 3. A crystal can be regarded as a three-dimensional grid and 
one can imagine that this will produce a three-dimensional 
x-ray diffraction pattern. As with electron microscope grids, 
the pattern is reciprocal to the crystal lattice. The planes 
that intersect the sphere in Fig. 3.1 are layers in a three-
dimensional lattice, called reciprocal lattice because the 
distances are related reciprocally to the unit cell dimensions.
Each reciprocal lattice point corresponds to one diffracted 
reflection. The reciprocal lattice is an imaginary but extremely 
convenient concept to determine the direction of the dif-
fracted beams. If the crystal rotates, the reciprocal lattice 
rotates with it. In an x-ray diffraction experiment the direc-
tion of the diffracted beams depends on two factors: the 
unit-cell distances in the crystal, from which the unit-cell 
distances in the reciprocal lattice are derived, and the x-ray 
wavelength. As indicated in Fig. 3.1, diffraction conditions 
are determined not only by the reciprocal lattice but also by 

4. Notes4. Notes
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the radius of the sphere of the reflection or “Ewald sphere,” 
of which the radius is 1/λ.

 4. The imaging plate detector is formed by a photosensitive 
plate, made of BaFBr:Eu. When hit by radiation, the plate 
produces a latent image that can be excited by a laser oper-
ating at 633 nm, which generates 390 nm radiation corre-
sponding to the fluorescence transition of Europium. This 
radiation is collected in the photomultiplier and converted 
to an electric signal.

 5. The CCD camera (charged coupled device) is another kind 
of area detector. The detector surface is constituted by volt-
age sensitive elements (pixels). They have a high dynamic 
range, combined with excellent spatial resolution, low noise, 
and high maximum count rate.

 6. The resolution is defined as the minimum inter-planar spacing of 
the real lattice for the corresponding reciprocal lattice points 
(reflections) that are being measured. It is directly related to 
the optical definition, the minimum distance that two objects 
can be apart and still be seen as two separate objects. Thus, 
high resolution means low minimum spacing. Resolution is 
normally quoted in Ångstroms (Å).

 7. An oscillation image (also called frame) is obtained by rotat-
ing a crystal continuously through 0.2–1.0° about a fixed 
axis, called φ axis, perpendicular to the incident x-ray beam.

 8. The Patterson function is a Fourier summation with inten-
sities as coefficients and without phase angles. It can be 
written as: P(u,v,w) = Σ|F(hkl)|2cos2π(hu + kv + lw). Further, 
it can be demonstrated that the Patterson function can be 
alternatively written as the self-convolution of the electronic 
density: P(u,v,w) = òrρ(r)ρ(r + u)dr.

 9. Macromolecules in crystals are not static. Atoms vibrate 
around an equilibrium position and, as a consequence, the 
intensity of the diffracted beams are weakened. This phe-
nomenon is expressed by the temperature factor B = 8π2 × u2

where “u” is the mean square displacement of atoms around 
the atomic positions.

10. The maximum likelihood method involves determining the 
parameters of an assumed model that maximize the likelihood 
of the data. Thus, the most appropriate value for each variable 
(e.g., bond distances, angles, etc.) is that which maximizes the 
probability of observing the measured values.

11. Protein crystals are affected by lattice defects. Therefore, they 
are formed by different mosaic blocks with slightly different 
orientations. As an ideal single crystal has a mosaicism equal 
to 0 degrees, a good quality protein crystal should have a 
low mosaicism (0.2–0.5 degrees).
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12. Table 3.1 shows the output of the program Denzo after 
autoindexing. In this table, all the 14 possible Bravais lat-
tices are listed from the highest symmetry (primitive cubic) 
to the lowest (primitive triclinic), allowing identification of 
the crystal lattice. After the lattice name, the table displays 
a percentage value that represents the amount of distortion 
that unit-cell parameters would suffer in order to fit the 
lattice. Next to this percentage, the “distorted-to-fit” unit-
cell parameters are listed. Below these values, the undis-
torted unit-cell parameters are shown for comparison. The 
goal of the autoindexing procedure is to find the highest 
symmetry lattice which fits the data with minimal distor-
tion. In the example shown in Table 3.1, the crystal lattice 
is primitive hexagonal, since 0.22% is an acceptable amount 
of distortion, especially given that the unit-cell parameters 
were refined from a single frame. The crystal lattice should 
be confirmed by the overall Denzo data reduction and Sca-
lepack scaling procedure.

 13. χ2 is a parameter related to the ratio between intensity and 
its standard deviation σ for all measurements and its value 
should be around 1. The χ2 is mathematically represented by 
the following equation:
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where hkl are the Miller indices and N indicates the number 
of observations.

14. Rsym is the parameter used to compare the intensity (I) of sym-
metry related reflections for n independent observations:
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The index i indicates the experimental observations of a 
given reflection. I(hkl) is the average intensity for symmetry-
related observations.

15. To avoid model bias often the model is transformed into a 
poli-Ala search probe. Only the coordinates of the polypep-
tide backbone and of Cβ atoms are conserved, whereas the 
side chain atoms are deleted.

16. The MolRep solutions represent the highest superposition 
peaks between the experimental Patterson function and the 
Patterson function calculated from the search probe, rotated, 
and translated in the real cell.
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17. Correlation coefficient value (CCf) lies between 0 and 1 
and measures the agreement between the structure factors 
calculated from the rotated and translated model and the 
observed structure factors. The correlation coefficient is cal-
culated by REFMAC5 using the following formula:
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 18. Figure of merit. The “figure of merit” m is: m
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  P(α) is the probability distribution for the phase angle α and 
Fhkl(best) represents the best value for the structure factors. 
The m value is between 0 and 1 and is a measure of the agree-
ment between the structure factors calculated on the basis of 
the model and the observed structure factors. If the model is 
correct the figure of merit approaches 1.

19. Non-crystallographic symmetry (NCS) occurs when the 
asymmetric unit is formed by two or more identical subu-
nits. The presence of this additional symmetry could help 
to improve the initial phases and obtain interpretable maps 
for model building using the so-called density modification 
techniques (24).

20. Usually, the sequence region that contains the largest 
number of aromatic residues is chosen to start the search. 
The aromatic residues (especially tryptophan) contain a high 
number of electrons and display an electronic density shape 
that is easy to recognize (see Fig. 3.4).

21. All the mentioned programs (XFIT, O, QUANTA, etc.) 
are provided with functions that identify the maxima in the 
Fo-Fc map above a given threshold (usually 3σ is used) and 
place the water molecules at the maxima peaks.

22. DpsTe. DpsTe is a member of the Dps family of proteins 
(DNA binding proteins from starved cells). DpsTe has 
been isolated and purified from the cyanobacterium Ther-
mosynechococcus elongatus. The structure has been solved 
by Molecular Replacement at 1.81 Å resolution and has 
been deposited in the Protein Data bank with the accession 
number 2C41.
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Chapter 4

Pre-Processing of Microarray Data and Analysis 
of Differential Expression

Steffen Durinck

Abstract

Microarrays have become a widely used technology in molecular biology research. One of their main 
uses is to measure gene expression. Compared to older expression measuring assays such as Northern 
blotting, analyzing gene expression data from microarrays is inherently more complex due to the massive 
amounts of data they produce. The analysis of microarray data requires biologists to collaborate with 
bioinformaticians or learn the basics of statistics and programming. Many software tools for microarray 
data analysis are available. Currently one of the most popular and freely available software tools 
is Bioconductor. This chapter uses Bioconductor to preprocess microarray data, detect differentially 
expressed genes, and annotate the gene lists of interest.

Key words: microarray; normalization; bioconductor; R; differential gene expression.

Microarray data consist of noisy signal measurements. The real gene 
expression measure is masked by different sources of noise, such 
as labeling efficiency, print-tip effects, between-slide variation, and 
other factors (1, 2). Normalization of microarray data aims to correct 
the raw intensity data for these effects. After normalization, the 
data are ready for further analysis, such as determining differentially 
expressed genes and clustering. This chapter assumes that microar-
rays have been scanned and image processing has provided the intensity 
measurements for the channels involved. Methods for quality assess-
ment, data normalization, detection of differential expression, and 
annotation of differentially expressed features are described.

1. Introduction1. Introduction

1.1. Noisy Signals1.1. Noisy Signals
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Various methods exist to assess the quality of the microarray 
experiments and the need for normalization. Graphical represen-
tations of the array data can help to quickly identify bad arrays 
and the need for normalization.

Hybridization problems can be identified by plotting images 
of the foreground and background intensities for each channel 
for spotted arrays and of the PM and MM values of Affymetrix 
GeneChip™ chips. One usually does not expect to see any distinct
pattern on these images, as intensity levels are expected to be 
spread randomly over the array. As such, any strikes or other 
patterns that show up indicate possible faults and contamination 
during hybridization. Depending on the severity of the fault, it 
may be possible to correct the problem during normalization.

For cDNA arrays, the effect of failing or suboptimal print 
tips can be visualized by using a boxplot of the intensities per 
print tip.

A general assessment of hybridization quality is to identify 
how many spots are above the background. If this number is too 
low, then the hybridization might have to be redone.

Between-array differences can be visualized by plotting box-
plots of the raw intensities grouped per array. Failing arrays show 
up as outliers, and the need for between-array normalization is 
visualized by the boxplot pattern.

A second plot, useful for comparing different arrays, is a scat-
ter plot of the intensities of every array against the corresponding 
intensities on every other array in the experiment. Alternatively, 
this can be represented by plotting a correlation heatmap (Note 1).
Usually one has at least one repeat of each sample and one can 
expect the correlation between these hybridizations to be high 
and higher than when compared with a different hybridization. 
When the correlation between repeats is low this usually means a 
bad hybridization or in some cases a mix-up of samples. Hybridi-
zations failing these quality assessments should be discarded and 
replaced by a new hybridization if possible or given a lower weight 
in the subsequent analysis.

Affymetrix probe sets consist of probes, which individually 
measure a perfect match (PM) or a paired-mismatch (MM) signal. 
The PM probes measure the effective gene expression status and 
the MM probes estimate the amount of cross-hybridization 
and thus background noise. For each probe set there are usually 
11 to 20 PM and MM probes. Each probe is 25 bp long. One can 
think of Affymetrix chip preprocessing as a three-step procedure, 
although steps are sometimes combined depending on the algo-
rithm. These three steps are: estimation of the background signal, 
possible background correction normalization, and summarizing 
the separate normalized probe measurements into a single value 
per probe set.

1.2. Quality 
Assessment
1.2. Quality 
Assessment

1.3. Pre-Processing 
of Affymetrix Data
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The MAS5.0 normalization procedure is the normalization 
method developed by Affymetrix. It makes use of the MM 
measurements to compute an Ideal Mismatch value and then 
corrects the PM values with these Ideal Mismatch values. MAS5.0
then uses a one-step Tukey Biweight algorithm as summariza-
tion method (3).

The first normalization method implementing a model to 
estimate the background corrected expression measure was 
the Model Based Expression Index (MBEI) (also called dChip 
algorithm) (4). MBEI uses the observed PM and MM values to 
calculate a fitted value for the two properties and calculates the 
difference PM - MM.

The Robust Multi-array Average (RMA) (5) method does 
not use the MM values; the background is instead estimated by 
convoluting the signal and noise distributions from the PM values.
After background correction, RMA performs a quantile normali-
zation (Note 2) and then uses median polish (Note 3) as 
summarization method.

GCRMA (6) is a modified RMA procedure and includes the 
GC content of the probes in the background adjustment step.

Finally, the Variance Stabilizing Normalization (VSN) method
combines background correction and normalization and can be 
used for two-color experiments as well (7). VSN returns normal-
ized data, which has an approximately constant variance independent
of the spot intensity.

Normalized data are usually returned in a log2 scale, except 
for the VSN method, which returns data in a generalized log 
(glog) scale (7).

Methods such as MAS5.0, MBEI, GCRMA, RMA, and VSN 
are used frequently as normalization methods, and depending on 
the method used, the final expression values will differ (8–10).
To date, none of these methods has been adopted as the standard 
best method and more research has to be done to investigate this.

Two-color microarray experiments are characterized by probes 
spotted on a microarray slide and the use of two labeled samples 
that are hybridized simultaneously on the same array and labeled 
with a different dye, usually Cy3 (green) and Cy5 (red). Image 
analysis software gives background and foreground intensity 
measurements for each channel. One can choose to subtract the 
background measurements from the foreground or not.

Print-tip lowess normalization is a robust local regres-
sion based normalization that accounts for intensity and spatial 
dependence in dye biases (1) and is frequently used to normalize 
cDNA microarray experiments. The lowess fit adjusts each 
feature with a different normalization value depending on its 
overall intensity. By generating a lowess fit for each print-tip separately
one can correct for print-tip effects.

1.4. Pre-Processing 
of Two-Color Data
1.4. Pre-Processing 
of Two-Color Data
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This type of normalization can be used under the assump-
tion that only a small subset of genes is differentially expressed 
between the two samples. If this assumption does not hold, one 
can rely on spiked-in RNA to calculate the lowess fit and use 
that fit to adjust the data (11). Other frequently used methods 
to normalize cDNA microarrays are qspline (12) and VSN (7)
normalization.

A between-slide normalization, which corrects for a difference 
in scale, can be applied if the variance of the ratios differs a lot 
between the different slides. A boxplot of the ratios grouped per 
slide will reveal the necessity of such between-slide normalization.

ANOVA (13) is an alternative to the types of normalization 
methods described in the preceding and aims to estimate the 
size of different effects, including dye, gene, array, and sample. 
Changes in gene expression across the samples are estimated by 
the sample x gene interaction terms of the model (13).

Prior to detection of differentially expressed genes, a data-filter-
ing step can be applied. It is recommended to eliminate all genes 
that are not expressed over all samples.

For cDNA microarrays, genes for which the foreground 
<f (background), where f can be for example background + 2sd 
(background), can be chosen as threshold for expression. For 
Affymetrix chips the absent/present calls can be used. Genes that 
show a low variation over the whole dataset or are not expressed 
at all can be eliminated, thus reducing the number of genes that 
have to be tested for differential expression.

Different methods to investigate differential expression exist, and 
as with the different methods for normalization, no one method 
has become the standard. Some popular methods to detect 
differentially expressed genes are:
Fold change
T-test and ANOVA
SAM: Significance Analysis of Microarray data (implemented in 

the siggenes package) (14)
Linear models and empirical Bayes, implemented in the limma

package (15, 16)
In this chapter, the linear models and empirical Bayes methods 
implemented in the limma package (15, 16) are used for detec-
tion of differential expression. With limma one first calculates a 
moderated t-statistic for differential expression for each gene by 
performing a linear model fit on the data. Second, an empirical 
Bayes step is applied that produces more stable estimates when 
the number of samples is small. This method for detection of dif-
ferentially expressed genes is general and can be applied to both 
one- and two-color microarray data.

1.5. Data Filtering1.5. Data Filtering

1.6. Detection of 
Differentially
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Different annotation packages exist in Bioconductor. This 
chapter uses the biomaRt package (17) to annotate a list of dif-
ferentially expressed features. Other annotation packages that can 
be used are annaffy, annBuilder, and annotate (18). BioMart 
(19) is a generic data management system developed jointly by 
the European Bioinformatics Institute (EBI) and Cold Spring 
Harbor Laboratory (CSHL). Examples of BioMart databases are:
Ensembl: A software project that produces and maintains auto-

matic annotation on selected eukaryotic genomes (http://
www.ensembl.org)

GRAMENE: A data resource for comparative genome analysis in 
the grasses. (http://www.gramene.org)

Wormbase: A data resource for Caenorhabditis biology and 
genomics (http://www.wormbase.org)

HAPMART: A data resource containing the results of the HAP-
MAP project. (http://www.hapmap.org)

These databases provide annotation data and other biological 
information, which cover most of the microarray research needs.

The BioConductor package biomaRt enables fast real-time 
queries to these BioMart databases and their associated web 
services. Examples of information that can be retrieved starting 
with Affymetrix identifiers are gene names, chromosome locations,
GO identifiers, and many others.

In order to use biomaRt, one needs to have a basic knowledge of 
R. Unlike many “easy-to-use” microarray analysis packages, which 
have GUI facilities, R is command line. This gives the advantage 
that users will have a better understanding of what they are doing 
and can become power-users who go beyond the limitations asso-
ciated with GUIs, have access to the newest methods, and can 
gradually start to implement their own R methods. A disadvantage 
is that the learning curve for R is steep and it takes some endurance 
to become familiar with it. If the reader is already accustomed with 
R, he or she may wish to continue from Section 2.3.

 1. R is vector based and even if one assigns only one value to a 
variable, it will be handled as a vector.

 2. To create a vector with length larger than 1 we use the c()
function:

>vec=c(20,25,30,35,40)

1.7. Annotation1.7. Annotation
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 3. To select the third element of this vector, type:

vec[3]

 1. A microarray dataset can typically be represented as a matrix 
in which the rows represent genes and the columns repre-
sent different samples or conditions under which the gene 
expression is measured.

 2. A matrix can be created using the matrix() function. The 
arguments nrow and ncol define the number of rows and 
columns in the matrix, and the argument byrow defines how 
the data should be put in the matrix, filling the rows first or 
the columns (by default this is columns first).

>mat=matrix(c(30,40,50,60), nrow=2)
>mat
[,1] [,2]
[1,] 30 50
[2,] 40 60

 3. To select the element of the first row and second column, 
type:

>mat[1,2]
[1] 50

 1. A list is a collection of different objects such as matrices, 
vectors, and characters.

One can create a list consisting of the vector and matrix 
created above and a character string by:

>myList=list(vec, mat, “my first list”)

 2. To access the first element one can type:

>myList[[1]]
[1] 20 25 30 35 40

 3. A second type of list is a named list. Here the elements of the 
list are named and these names can be used to access the 
separate elements by using a $ symbol between the name of 
the object and the name of the element in the list.

>myNamedList=list(myVec=vec, myMat=mat, 
myText=“Some text”)
>myNamedList$myText
[1] “Some text”

 1. A data.frame is very similar to a list but has the restriction 
that the length of all the elements it contains should be the 
same. So in the preceding example, the matrix should have 
as many rows as the length of the vector.

2.1.2. Matrices2.1.2. Matrices

2.1.3. Lists2.1.3. Lists
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 2. This type of object is used very frequently in gene expres-
sion data. For example, one can think of putting a matrix 
with log ratios and a vector with gene annotations in a 
data.frame.

 3. An example data.frame would be the matrix defined above 
combined with a vector of gene names.

>genes=c(“BRCA2”,“CDH1”)
>myFrame=data.frame(genes=genes,
exprs=mat)

 4. As with the named list, different parts of the data.frame can 
be accessed using the $ symbol.

>myFrame$genes
[1] BRCA2 CDH1
Levels: BRCA2 CDH1

 1. R provides many ways to get help.
 2. If one knows the function name but does not know how to 

use it, a question mark before a function name will display its 
help. For example, to display the help for plot, type:

>?plot

 3. If one does not know the function name exactly you can try 
to find help by using the help.search() function

>help.search(“plot”)

The core of R contains functions that are broadly applicable. 
R packages provide functions for specific applications. The R pack-
aging system is a way to distribute functions that can be used to 
do a specific type of job, such as cDNA microarray normaliza-
tion. Beside code, these packages contain help files, example data, 
and vignettes. Vignettes are a good way to explore how to use 
new functions. Most packages can be downloaded from a nearby 
CRAN mirror website (see http://www.r-project.org and follow 
link CRAN).

Bioconductor is an open source and open development software 
project for the analysis and comprehension of genomic data (20, 
21). Bioconductor is implemented in R and makes use of the R 
packaging system to distribute its software. The project’s home 
page can be found at http://www.bioconductor.org, and contains 
lots of information on packages, tutorials, and more.

The following Method section uses publicly available micro-
array datasets, which can be downloaded from ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress) and the Bioconductor 
web site.

2.1.5. Help2.1.5. Help

2.2. R Packages2.2. R Packages

2.3. Bioconductor2.3. Bioconductor

2.4. Example datasets2.4. Example datasets
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 1. Go to the ArrayExpress homepage.
 2. Follow link “query database.”
 3. Query for experiment “E-MEXP-70.”
 4. Follow the FTP link and download the .cel files.

 1. The cDNA experiment used here comes as an example 
dataset with the marray package, downloadable from the 
Bioconductor web site.

 1. Affymetrix chips can be normalized using the affy and gcrma
Bioconductor packages. The affy package provides data 
visualization methods and various normalization methods 
such as MAS5.0 and RMA (22). The GCRMA normaliza-
tion method is implemented in a separate package gcrma
(6). When applying GCRMA for the first time, a package 
containing the probe sequence information of the chip will 
be automatically downloaded; this will be done every time 
an array of a new chip design is normalized (Note 4).

 2. After installing these packages, load them into your R session.

>library(affy)
>library(gcrma)

 3. Read in the CEL files with the function ReadAffy and give 
the celfile.path as argument.

>data=ReadAffy(celfile.path=“D:/DATA/
E-MEXP-70”)

 4. Check your slides by producing raw images. Consider, for 
example, the 3rd hybridization in the set under consideration 
(Note 5). These images allow one to assess the hybridiza-
tion quality. Any strikes or bright zones indicate contamina-
tion with dust or other interfering materials.

>image(data[,3])

The result of this command is shown in Fig. 4.1.
 5. Check for RNA degradation. Affymetrix probes in a probe 

set are designed to cover different parts of the transcript. By 
plotting the intensities according to location of these probes 
(5′ to 3′) in transcript sequence, one can see if the RNA was 
degraded or not. Degradation usually starts from the 5′ side 
of the transcript.

2.4.1. Affymetrix 
Experiments
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>degrad=AffyRNAdeg(data)
>plotAffyRNAdeg(degrad)

The result of this command is shown in Fig. 4.2.
 6. Normalize the data using GCRMA (Note 6).

Fig. 4.1. Image of raw intensities of an Affymetrix chip. This image was created using 
the ‘image’ function.

Fig. 4.2. RNA degradation plot created using the function ‘plotAffyRNAdeg.’
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>norm=gcrma(data)
Computing affinities.Done.
Adjusting for optical effect……Done.
Adjusting for non-specific binding……Done.
Normalizing
Calculating Expression

 7. The object created after normalization is called an Expression 
Set (exprSet) and is the typical Bioconductor object to store nor-
malized data of two and one color microarray data (Note 7).

>norm
Expression Set (exprSet) with
12625 genes
6 samples
phenoData object with 1 variables and 6 cases
varLabels
sample: arbitrary numbering

 8. Check the normalized data by plotting a boxplot.

>boxplot(as.data.frame(exprs(norm)))

The plot produced by this command is shown in Fig. 4.3.
 9. Check correlation between samples by either pair-wise scatter 

plot or a heatmap of the correlation.

>pairs(exprs(norm))

The plot produced by the pairs command is shown in Fig. 4.4.

Fig. 4.3. Boxplot comparing the intensities grouped per array after normalization.
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Note how the correlation between repeats is higher than 
between different samples.
10. Save the normalized data e.g. in a D:/DATA directory, make 

sure the file has the extension “RData” (Note 8).

>save(norm, file=“D:/DATA/emexp-70.RData”)

11. The norm object is of the class “ExprSet” and the normal-
ized expression data can be accessed using the exprs func-
tion, which returns the expression matrix.

The function expresso is an alternative function that implements 
the steps described in the preceding.
 1. Repeat the steps of 3.1.1. until Step 5
 2. Now use the expresso command to normalize the data. In 

the following command, the VSN method is used without 
background correction as the normalization method and 
medianpolish is used as the summarization method.

>norm=expresso(data, pmcorrect.method 
=“pmonly”, bg.correct=FALSE, normalize.
method = “vsn”, summary. method = 
“medianpolish”)

3.1.2. Using Expresso3.1.2. Using Expresso

Fig. 4.4. Pairwise scatter plots of the intensities of each array against the corresponding 
intensities on all other arrays.
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 1. There are many formats in which microarray data can be 
given to the data analyst. The following example involves 
importing .spot data.
Load the limma and marray libraries.

>library(limma)
>library(marray)

 2. In order to use a dataset contained in the marray package, 
one must first retrieve the directory where this dataset is 
installed.

>dir=system.file(“swirldata,”
package=“marray”)

 3. The read.maimages function can be used to import all .spot 
files (and some other file formats) that reside in this direc-
tory (Note 9).

>raw=read.maimages(source=“spot,” 
ext=“spot”, path =dir)

 4. Now you should have a RGList object containing the raw 
intensity data. It is a names list containing the red and green 
foreground and background intensities and the filenames 
of the .spot files. The individual intensities can be accessed 
using a $ symbol as explained in the R essentials section.
>raw

An object of class “RGList”
$R
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 19538.470 16138.720 2895.1600 14054.5400
[2,] 23619.820 17247.670 2976.6230 20112.2600
[3,] 21579.950 17317.150 2735.6190 12945.8500
[4,] 8905.143 6794.381 318.9524 524.0476
[5,] 8676.095 6043.542 780.6667 304.6190
8443 more rows …

$G
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 22028.260 19278.770 2727.5600 19930.6500
[2,] 25613.200 21438.960 2787.0330 25426.5800
[3,] 22652.390 20386.470 2419.8810 16225.9500
[4,] 8929.286 6677.619 383.2381 786.9048
[5,] 8746.476 6576.292 901.0000 468.0476
8443 more rows …

$Rb
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 174 136 82 48
[2,] 174 133 82 48

3.2. cDNA Microarray 
Data
3.2. cDNA Microarray 
Data
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[3,] 174 133 76 48
[4,] 163 105 61 48
[5,] 140 105 61 49
8443 more rows …

$Gb
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 182 175 86 97
[2,] 171 183 86 85
[3,] 153 183 86 85
[4,] 153 142 71 87
[5,] 153 142 71 87
8443 more rows …

$targets
FileName
swirl.1 swirl.1
swirl.2 swirl.2
swirl.3 swirl.3
swirl.4 swirl.4

 5. The gene names are stored in a separate .gal file. One can 
add the gene names to the raw object as follows:

>raw$genes=readGAL(paste(dir,“fish.
gal,”sep=“/”))

 6. Now it is necessary to assign the array layout to the RGList
object. This can be done using the function getLayout()

>raw$printer=getLayout(raw$genes)

 7. Once the layout is assigned, one can perform quality 
assessment by plotting, for example, the images of the 
different channels to detect hybridization errors. Figure 4.5
shows a plot of the log2 intensities for the red back-
ground signal.

>imageplot(log2(raw$Rb[,1]), RG$printer, 
low=“white”, high =“black”)

 8. An M versus A plot (23), which is sometimes also called an R 
versus I plot, is a nice way to visualize the data and helps to 
see the effects of normalization and it is also a popular way to 
show differentially expressed genes (see the following). The 
function plotMA() draws such a plot, the argument array can 
be used to set which hybridization should be plotted.

>plotMA(raw, array =3)

The result of this plotting function is shown in Fig. 4.6.
Note the typical banana shape of this plot of non-normal-
ized two-color microarray data.
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 9. To assess the need for print tip specific lowess normaliza-
tion, one can either plot boxplots where the intensities are 
grouped by print-tip or plot an MA plot for each print-tip 
separately using the plotPrintTipLoess() function.

>plotPrintTipLoess(raw)

10. Now the raw microarray data can be normalized using the 
function normalizeWithinArrays() (Note 10). This function 
performs by default a print-tip specific lowess normalization 
on background subtracted red/green ratios. This normaliza-
tion returns a MAList object.

>norm=normalizeWithinArrays(raw)

11. To see the effect normalization has on the data one can plot 
again an M versus A plot.

>plotMA(norm, array =3)

The result of this plot is shown in Fig. 4.7. Notice that the 
banana shape visible in Fig. 4.6 has disappeared.

Fig. 4.5. Image of the log2 intensities for the red background signal of cDNA microarray. The different zones in this plot 
represent different print-tips.
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Fig. 4.6. M versus A plot of background corrected raw intensities.

Fig. 4.7. M versus A plot of normalized data.
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12. As with the Affymetrix normalization, a boxplot and pair-
wise plot can be used to further check quality and need for 
between-array normalization.

13. Use the function normalizeBetweenArrays() to do between-
array normalization.

> norm = normalizeBetweenArrays(norm)

 14. Now the data are ready for further analysis.

 1. Load the limma package.

>library(limma)

 2. Create labels for the samples.

>sample= c(“day0”,“day0”,“day0”,“day10”,
“day10”,“day10”)

 3. Create the design matrix (Note 11).

>design=model.matrix(∼0+factor(sample))

 4. Adjust the column names of the design matrix.

>colnames(design)=c(“day0”,“day10”)
>design
day0 day10
1 1  0
2 1  0
3 1  0
4 0  1
5 0  1
6 0  1
attr(,“assign”)
[1] 1 1
attr(,“contrasts”)
attr(,“contrasts”)$“factor(sample)”
[1] “contr.treatment”

 5. Fit the linear model.

>fit=lmFit(norm, design =design)

 6. Specify the contrast matrix to define which differences are 
of interest. In this simple example there is only one difference 
of interest and that is the difference between day0 and day10.

>contrast.matrix=makeContrasts(day0-day10, 
levels=design)
>contrast.matrix
day0-day10
day0 1
day10 -1

3.3. Detection of 
Differential Expression 
Using limma

3.3. Detection of 
Differential Expression 
Using limma
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 7. Fit the contrast matrix.

>fit2=contrasts.fit(fit, contrast.matrix)

 8. Apply empirical Bayes on this fit

>eb=eBayes(fit2)

 9. Show the top 100 differentially expressed genes using false 
discovery rate correction for multiple testing.

>top=topTable(eb, n =100, adjust.
method=“fdr”)
>top
 ID M A t P.Value B
7261 37192_at -7.582453 5.073572 -56.48199 4.806783e-05 10.339575

5808 35752_s_at -6.974551 6.422358 -49.68752 4.806783e-05 10.003077

4059 34020_at 7.602192 5.399944 48.24657 4.806783e-05 9.918376

892 1797_at -5.355800 6.250378 -43.20631 6.505689e-05 9.575488

10434 40335_at -5.860488 5.388965 -41.81805 6.505689e-05 9.466281

5683 35628_at -3.714908 6.582599 -36.18743 1.212805e-04 8.940546

5151 35101_at -6.287120 5.722050 -35.32328 1.212805e-04 8.846069

274 1252_at -3.653588 4.055042 -33.78907 1.292874e-04 8.667675

8130 38052_at -8.984562 8.237705 -33.41587 1.292874e-04 8.622092

7468 37397_at -3.036533 7.160758 -30.83967 1.619917e-04 8.281642

10. A volcano plot, which plots the log odds score against the 
log fold change is a good way to visualize the results of the 
differential gene expression calculations. The argument highlight
can be used to plot the names for a specified number of top-
most differentially expressed features.

>volcanoplot(eb, highlight =4)

The volcano plot produced by this function is shown in 
Fig. 4.8.

As described in the Introduction, the biomaRt package is used 
here to annotate the list of differentially expressed features. For 
further information on installation of biomaRt see Note 12.

The following example uses the list of upregulated genes 
found in Section 3.3.1.
 1. Load the library.

>library(biomaRt)

 2. List the available BioMart databases using the function list-
Marts().

>listMarts()
name version
ensembl ENSEMBL 42 GENE (SANGER)
snp ENSEMBL 42 VARIATION (SANGER)

3.4. Annotation3.4. Annotation
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vega VEGA 21 (SANGER)
wormbase WORMBASE (CSHL)
uniprot UNIPROT PROTOTYPE (EBI)
msd MSD PROTOTYPE (EBI)
dicty DICTYBASE (NORTHWESTERN)

 3. Select a BioMart database to use with the function useMart()
and verify database connection.

>ensembl=useMart(“ensembl”)

 4. List the available datasets in the selected BioMart data-
base.

>listDatasets(ensembl)
  dataset version
 1 ptroglodytes_gene_ensembl CHIMP1
 2 ggallus_gene_ensembl  WASHUC1
 3 rnorvegicus_gene_ensembl RGSC3.4
 4 scerevisiae_gene_ensembl SGD1
 5 tnigroviridis_gene_ensembl TETRAODON7
 6 xtropicalis_gene_ensembl JGI3
 7 frubripes_gene_ensembl FUGU2
 8 cintestinalis_gene_ensembl CINT1.95

Fig. 4.8. Volcano plot, plotting the significance of differential expression versus log fold 
change.
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 9 agambiae_gene_ensembl MOZ2a
10 amellifera_gene_ensembl AMEL2.0
11 btaurus_gene_ensembl BDGP4
12 celegans_gene_ensembl CEL140
13 mmusculus_gene_ensembl NCBIM34
14 cfamiliaris_gene_ensembl BROADD1
15 dmelanogaster_gene_ensembl BDGP4
16 drerio_gene_ensembl ZFISH5
17 hsapiens_gene_ensembl NCBI35
18 mdomestica_gene_ensembl JGI3

 5. Update the mart object by selecting a dataset using the use-
Dataset() function.

>ensembl=useDataset(dataset=“hsapiens_
gene_ensembl”,mart=mart)

Checking attributes and filters … ok

 6. In BioMart systems, attributes represent the annotation one 
wants to retrieve. The listAttributes function lists all the avail-
able attributes that can be retrieved from the selected dataset. 
One of them is ‘hgnc_symbol,’ which will be used later.

>listAttributes(ensembl)
name description

1 adf_embl embl
2 adf_go go
3 adf_omim omim
4 adf_pdb pdb

 7. In BioMart systems, filters make the application retrieve the 
features that pass these filters. The function listFilters shows 
all possible filters that can be used on this dataset. One of 
them is ‘affy_hg_u95av2’, which represents the Affymetrix 
identifiers of the example dataset.

>listFilters(ensembl)
  name description

1 affy_hc_g110 Affy hc g 110 ID(s)
2 affy_hg_focus Affy hg focus ID(s)
 3 affy_hg_u133_plus_2 Affy hg u133 plus 2 ID(s)
4 affy_hg_u133a Affy hg u133a ID(s)

 8. Get the gene symbols for the 100 differentially expressed 
features stored in the top object, which was created in 
Section 3.3, using ‘hgnc_symbol’ as attribute to retrieve and 
‘affy_hg_u95av2’ as filter. The top list contains affymetrix 
identifiers from the hgu85av2 array that is to be annotated.

>getBM(attributes=c(“affy_hg_u95av2”,“hgnc_
symbol,”“chromosome_name”),filters=“affy_
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hg_u95av2”,values=top$ID[1:10], 
mart=ensembl)
affy_hg_u95av2 hgnc_symbol chromosome_name
1252_at REEP5 5
1797_at CDKN2D 19
35752_s_at  3
35752_s_at PROS1 3
37192_at EPB49 8
37524_at STK17B 2
38052_at F13A1 6
39878_at PCDH9 13
40335_at CLCN4 X

 9. Retrieving other information is similar to retrieving gene 
names. By using different attributes, one can retrieve infor-
mation such as GO, INTERPRO protein domains, start 
and end positions on chromosomes, etc., starting from the 
Affymetrix identifiers or any other type of filter available.

 1. A correlation heatmap plots the correlation of the intensities 
between all samples in a color-coded fashion. The image is 
displayed as a grid containing square fields. In a correlation 
heatmap the rows and columns of this grid represent the 
samples and the color of each field represents the correlation 
between the respective two samples. See the function heat-
map for more details.

 2. Quantile normalization aims to make the distribution of probe 
intensities for each array the same for a set of arrays (8).

 3. When applying the median polish algorithm to a matrix, one 
subtracts the row medians and then the column medians in 
an iterative manner. After convergence, the row and column 
medians are zero, and the remaining matrix is subtracted 
from the original data matrix.

 4. The probe package contains the probe sequences used in 
GCRMA. The cdf package is needed for both GCRMA and 
RMA, as it contains the location and identifiers of the probes. 
When an array of a new design is processed, the cdf and probe 
packages of this array will be automatically downloaded and 
installed. If this fails, make sure you are connected to the 
Internet and have permission to install R packages.

 5. To save an image or plot, the following three steps should be 
performed: determine the format of the picture (e.g. JPEG, 
PNG, postscript), and assign a name; do the plotting; close 
the plotting device to store the plot.

4. Notes4. Notes
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>png(file=“myplot.png”)
>plot(x,y) #The function used to make 
the plot
>dev.off() # to close the plotting device 
and save the plot

 6. To normalize the data with the RMA method, use the follow-
ing command:

>eset=rma(data)

 7. The different parts of an expression set object can be accessed 
using specific functions. Here is an example to access the 
intensity data.

>int=exprs(eset)

 8. To save the normalized data in a tab-delimited file, use the 
function write.table().

>write.table(exprs(eset), quotes=FALSE, 
sep=’\t’, file=‘D:/myExprsData.txt’)

 9. When the raw data are not in a format supported by the 
limma package, the read.table() function can be used to 
import it into R. The skip argument can be used to let the 
function know how many lines in the input file should be 
skipped before the real data row starts. Once the data are 
read, they need to be reformatted and put in a new RGList
object which then can be used to normalize.

10. The marray package also provides good methods to 
normalize and visualize two-color experiments. Check out 
the functions maNorm(), maPlot() and maBoxplot().

11. More advanced examples and details on the creation of 
design matrices can be found in the excellent limma users 
guide by G. Smyth.

12. Installation of biomaRt requires that the RCurl and XML 
packages are installed.
RCurl can be found on the following URL: http://www.
omegahat.org/RCurl
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Chapter 5

Developing an Ontology

Midori A. Harris

Abstract

In recent years, biological ontologies have emerged as a means of representing and organizing biological 
concepts, enabling biologists, bioinformaticians, and others to derive meaning from large datasets.
This chapter provides an overview of formal principles and practical considerations of ontology construc-
tion and application. Ontology development concepts are illustrated using examples drawn from the 
Gene Ontology (GO) and other OBO ontologies.

Key words: ontology, database, annotation, vocabulary.

The ongoing accumulation of large-scale experimental and 
computational biological investigation is frequently noted, and 
has led to concomitant growth of biological databases, and the 
amount and complexity of their content. To take full advan-
tage of this accumulated data, biologists and bioinformaticians 
need consistent, computable descriptions of biological entities 
and concepts represented in different databases. By providing 
a common representation of relevant topics, ontologies permit 
data and knowledge to be integrated, reused, and shared easily 
by researchers and computers. One example, describing the use 
of several different ontologies to integrate data for the labora-
tory mouse, is discussed in (1). A number of ontologies are now 
emerging in the biomedical domain to address this need, and still 
others can be envisioned.

1. Introduction1. Introduction
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An ontology is a shared, common, backbone taxonomy of relevant
entities, and the relationships between them within an applica-
tion domain (see Note 1).

In other words, a particular subject area can be thought 
of as a domain, and ontologies represent domains by defining enti-
ties within the domain (and the terms used to refer to them) 
and the way in which the entities are related to each other. For 
example, the Gene Ontology (GO) describes three domains, 
molecular function, biological process, and cellular component 
(for further information on GO, see (2–7)); sample terms from 
the cellular component ontology are “plastid” and “chloroplast,” 
and the latter is a subtype of the former (formally, the relation-
ship is chloroplast is_a plastid). In addition to forming a com-
putable representation of the underlying reality, an ontology thus 
provides a framework for communicating knowledge about a 
topic. Ontologies can take many forms, and can be represented 
in different formats, which support different levels of sophistication 
in computational analyses. For more detailed introductions to 
ontologies, especially as applied in biomedical domains, see refer-
ences (8–17).

A number of ontology development tools exist, of which the 
most commonly used for biomedical ontologies are Protégé and 
OBO-Edit. Both are open-source, cross-platform applications 
that provide graphical interfaces for ontology creation and main-
tenance (see Note 2).

Protégé supports editors for two approaches to modeling ontolo-
gies: the Protégé-Frames editor is used to build and populate 
frame-based ontologies, and the Protégé-OWL editor allows users to 
build ontologies for the Semantic Web, using the W3C’s Web 
Ontology Language (OWL; http://www.w3.org/2004/OWL/): 
available from http://protege.stanford.edu/download/down-
load.html.

OBO-Edit (formerly DAG-Edit) is a Java application for viewing 
and editing OBO ontologies (see the following). OBO-Edit uses 
a graph-based interface that is very useful for the rapid generation 
of large ontologies focusing on relationships between relatively 
simple classes. Available from https://sourceforge.net/project/
showfiles.php?group_id=36855

1.2. What Is an 
Ontology?
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The most comprehensive list available at present is the Open 
Biomedical Ontologies (OBO) collection (http://obofoundry.org).
The OBO project not only collects ontologies, but also establishes 
guidelines for useful ontologies in biomedical domains (OBO 
inclusion criteria are shown in Table 5.1). Other useful ontology 
collections include the Protégé Ontologies Library (http://
protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary) 
and the MGED Ontology Resources (http://mged.sourceforge.
net/ontologies/OntologyResources.php).

Ontology building involves an initial phase of research and 
groundwork, followed by a (usually intensive) phase in which the 
ontology is first established and populated; finally, ongoing itera-
tive refinement guided by usage should continue as long as the 
ontology is actively applied.

2.1.2. Ontology Collections2.1.2. Ontology Collections

2.2. Overview of 
Ontology Development
2.2. Overview of 
Ontology Development

Table 5.1
Original OBO principles

For an ontology to be accepted as one of the Open Biomedical Ontologies, the following criteria 
must be met. These criteria are available online at http://obofoundry.org/crit.html

• The ontologies must be open and can be used by all without any constraint other than that their 
origin must be acknowledged and they cannot be altered and redistributed under the same name.
The OBO ontologies are for sharing and are resources for the entire community. For this reason, 
they must be available to all without any constraint or license on their use or redistribution. How-
ever, it is proper that their original source is always credited and that after any external alterations, 
they must never be redistributed under the same name or with the same identifiers.

• The ontologies are in, or can be instantiated in, a common shared syntax. This may be either the 
OBO syntax, extensions of this syntax, or OWL.
The reason for this is that the same tools can then be usefully applied. This facilitates shared soft-
ware implementations. This criterion is not met in all of the ontologies currently listed, but we are 
working with the ontology developers to have them available in a common OBO syntax.

• The ontologies are orthogonal to other ontologies already lodged within OBO.
The major reason for this principle is to allow two different ontologies, for example, anatomy and 
process, to be combined through additional relationships. These relationships could then be used 
to constrain when terms could be jointly applied to describe complementary (but distinguishable) 
perspectives on the same biological or medical entity.
As a corollary to this, we would strive for community acceptance of a single ontology for one 
domain, rather than encouraging rivalry between ontologies.

• The ontologies share a unique identifier space.
The source of concepts from any ontology can be immediately identified by the prefix of the iden-
tifier of each concept. It is, therefore, important that this prefix be unique.

• The ontologies include textual definitions of their terms.
Many biological and medical terms may be ambiguous, so concepts should be defined so that their 
precise meaning within the context of a particular ontology is clear to a human reader.
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The first step in building any ontology is to determine the scope: 
What subject area must it represent, and at what level of detail? 
Clearly specified subject matter is essential, along with a clear 
sense of what does and does not fall into the intended scope.

For example, GO covers three domains (molecular function, 
biological process, and cellular component) and defines them. 
Equally importantly, GO also explicitly documents some of the 
things that it does not include, such as gene products or features 
thereof, mutant or abnormal events, evolutionary relationships, 
and so forth (2–4, 6, 18).

Once the scope has been decided upon, the next step is to find 
out whether any existing ontology covers the domain (e.g., see 
Ontology Collections); the obvious reason for this is to avoid 
duplicating other ontology development efforts. In most cases, 
developing a new ontology for a topic that is covered by an existing
ontology not only wastes time and work (and therefore money), 
but also runs the risk that incompatible knowledge representa-
tions will result.

It is important, however, to evaluate existing ontologies and 
the efforts that support them, to ensure that an ontology project 
is viable and the ontology itself usable. The most important things 
to look for in an ontology are openness, active development, and 
active usage. Open access to an ontology ensures that it can be 
easily shared.

Ongoing development ensures that an ontology will be 
adapted to accommodate new information or changed under-
standing of the domain, essential for rapidly moving fields such 
as many biological research areas. Active usage feeds back to the 
development process, ensuring that future development main-
tains or improves the ontology’s fitness for its purpose.

These and other considerations form the basis for the OBO 
Inclusion Criteria and the emerging OBO Foundry paper cita-
tion (19), which offer additional guidance in creating ontologies 
and evaluating existing ontologies (see Tables 5.1 and 5.2).

Should a new ontology be required, domain knowledge is indis-
pensable in its development; the involvement of the community 
that best understands the domain is one of the most important 
elements of any successful ontology development project. 
For biological ontologies, of course, the relevant community 
consists of researchers in the area covered by a given ontology, 
as well as curators of any databases devoted to the subject area. 
The advantages of involving domain experts such as biologists 
in ontology development are twofold: first, computer scientists 
(and other non-experts) can be spared the effort of learning large 
amounts of domain-specific knowledge; and second, if community 
members feel involved in development, it helps ensure that the 
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resulting ontology will be accepted and used within the biological
community. In other words, people are more inclined to “buy 
into” resources developed within rather than outside their 
communities.

It is essential to consider how the ontology will be used: 
Many of the decisions that must be made about the structure 
and content of an ontology depend on how it will be applied, 
what sort of queries it must support, and so forth. The expected 
lifespan of the ontology is also an important consideration: espe-
cially in a rapidly changing domain (such as almost any area of 
biomedical research), an ontology must be updated to reflect 
accumulating knowledge and evolving usage. Ideally, ontology 
developers should commit to actively maintaining both the ontology 
itself and contacts with the user community, to respond to queries
and incorporate growing and changing expertise.

Example 1: The Gene Ontology was originally designed, and 
continues to be used extensively, for the annotation of gene prod-
ucts in biological databases. It is often desirable to make annota-
tions to very specific terms, to capture as much detail as is available 
in the literature, but also to be able to retrieve annotations to a 
less specific term using the relationships between GO terms 
(see Note 3). These features of the desired application (or “use 
case”) not only ruled out a flat, unstructured vocabulary such 
as a key word list, but also inspired GO to adopt the so-called 
“true-path rule,” whereby every path from specific to general 

Table 5.2
Additional principles for the OBO Foundry

The OBO Foundry is a more recent development that refines and 
extends the original OBO model, and includes a number of additional 
criteria:

• The ontology has a clearly specified and clearly delineated content.

• The ontology provider has procedures for identifying distinct succes-
sive versions.

• The ontology uses relations that are unambiguously defined following 
the pattern of definitions laid down in the OBO Relation Ontology.

• The ontology is well documented.

• The ontology has a plurality of independent users.

The OBO Foundry will also distinguish “Reference” and “Application” 
ontologies; the former are formally robust and application-
neutral, whereas the latter are constructed for specific practical purposes. As 
the OBO Foundry matures, more inclusion criteria will be established. For 
further information on the OBO Foundry, see http://obofoundry.org/
and http://sourceforge.net/projects/obo
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to root terms must be biologically accurate. This requirement 
is consistent with sophisticated logical ontology representations 
that use transitive relations (see Relationships), and is effectively 
imposed on any formal ontology. Imposing this rule has thus had 
the additional effect of simplifying improvements in GO’s under-
lying logical representation.

Example 2: GO term names tend to be a bit verbose, often 
with some repetition between parent and child term names. This 
allows each term to make sense on its own, which is necessary for 
GO because terms are often displayed outside the context of the 
rest of the ontology, e.g., in gene or protein records in databases. 
An example is the GO biological process term “propionate 
metabolic process, methylmalonyl pathway (GO:001968)”: it is 
an is_a child of “propionate metabolic process (GO:0019541)”, 
but is not called simply “methylmalonyl pathway.”

The backbone of an ontology is formed of terms (also called 
classes, types, or, in formal contexts, universals), their definitions, 
and the relationships between terms. The actual work of develop-
ing an ontology therefore consists of identifying the appropriate 
classes, defining them, and creating relationships between them.

Classes represent types, not instances, of objects in the real 
world, and refer to things important to the domain; relationships 
 organize these classes, usually hierarchically.

In any controlled vocabulary, the precise meanings of terms must 
be clearly specified to ensure that each term is used consistently. 
Most biological ontology efforts start by using free text defini-
tions that capture meaning, including the conditions necessary 
and sufficient to distinguish a term from any other, in language 
accessible to humans. Formal, machine-parsable definitions take 
relationships into account to generate a computable representa-
tion of necessary conditions.

The key feature distinguishing ontologies from keyword lists is 
that ontologies capture relationships between terms as well as 
the terms themselves and their meanings. Relationships come in 
different types, of which is_a is the most important. Like classes, 
relationships must be clearly defined to ensure that they are used 
consistently. The is_a relationship indicates that one class is a 
subclass of another, as in the anthranilate pathway example cited 
in the preceding. The is_a relationship is transitive, meaning that 
if A is_a B and B is_a C, it can logically be inferred that A is_a
C. Other relationship types used may be transitive or not, 
and include part_of, which is used in GO and many other OBO 
ontologies, and develops_from, which appears in anatomy ontologies
and the OBO Cell Ontology (20). A number of core relationships 
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are defined in the OBO Relations Ontology (21), and should be 
used wherever applicable.

Other useful features include term identifiers, synonyms, and cross-
references (cross-references may be to database entries, entities 
from other ontologies or classification systems, literature, etc.). 
Every class in an ontology needs a unique identifier, which should 
not encode too much information; it is especially important not to 
encode position, i.e. information on relationships between terms, 
in an identifier, because to do so would mean that to move a term 
would change its ID. Synonyms and cross-references are optional 
but can be included to support searches and correlation with other 
information resources. See, for example, the GO term “ATP citrate
synthase activity” (GO:0003878), which has a text synonym (“ATP-
citrate (pro-S)-lyase activity”) and cross-references to entries in 
the Enzyme Commission classification (EC:2.3.3.8) and MetaCyc 
(ATP-CITRATE-(PRO-S-)-LYASE-RXN).

In the early stages of ontology development, it is important to 
consider what representation will best support the intended use 
of the ontology. At the simple end of the scale, key word lists 
form controlled vocabularies, and may include text definitions 
of the term, but do not capture relationships between different 
terms.

The most basic vocabularies that can be regarded as ontolo-
gies are those that include relationships between terms as well as 
the terms themselves. Still more logically rigorous structural features 
include complete subsumption hierarchies (is_a, described above) 
and formal, computable term definitions that support reasoning 
over an ontology (see Reasoning, below). Regardless of what struc-
ture and representation an ontology uses at the outset of its devel-
opment, each feature addition makes more powerful computing 
possible using the ontology, at a cost of increasing complexity, 
requiring more sophisticated maintenance tools. The most 
successful biomedical ontology projects such as GO, have started 
with simple representations, yet allowed sufficient flexibility to add 
logical rigor as the development project matures, to take advantage 
of the benefits of formal rigor (see below) (18, 22–24).

Furthermore, these structures can be represented in a number 
of different formats. The World Wide Web Consortium (W3C) 
has established the Web Ontology Language (OWL) as a stand-
ard for ontologies used by the Semantic Web; OWL has three 
sub-languages, OWL-Lite, OWL-DL, and OWL-Full, of differ-
ing degrees of complexity and expressive potential (see http://
www.w3.org/2004/OWL/ and (25)). The Open Biomedical 
Ontologies (OBO) format (see http://www.geneontology.org/
GO.format.obo–1_2.shtml) provides a representation similar to 
that of OWL, but with some special features tailored to the needs 
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of the biological community. Description logic systems (of which 
OWL-DL is an example), frame-based representations, Resource 
Description Framework (RDF; see http://www.w3.org/RDF/), 
and other (often much simpler and less expressive) representa-
tions have also been widely used; see (13) for an overview of 
ontology representations from a biological perspective.

To maximize its utility, an ontology should be released to the 
public and applied early in the development process. Errors 
to be corrected, gaps to be filled, and other opportunities 
to improve the ontology become much more apparent when 
the ontology is put to use for its intended purpose, involv-
ing actual instances of data, and when these data are used to 
answer research questions.

Early adoption of an ontology, along with the use of impor-
tant research data, also facilitates ongoing iterative development 
by making continued involvement in ontology maintenance 
advantageous and desirable to the wider community.

Formal ontologists have elucidated a number of rules governing 
the content and structure of “well-built” ontologies. As with the 
OBO Foundry inclusion criteria (with which they partly overlap), 
adherence to these rules requires development effort, but offers 
practical advantages, especially as an ontology project matures. 
The most obvious advantage is that if an ontology is consistent 
with formal rules, its developers can avail themselves of a growing
body of shared software tools. Two other benefits are more 
particular to ontology development and use: ontology alignment 
and reasoning.

“Ontology alignment” refers to explicit references made from 
classes in one ontology to classes in another ontology.

Many ontologies need to invoke terms (and the entities they 
represent) from domains covered by other ontologies. Although 
an ontology term may simply include the name of a class from 
another ontology, a formalized, identifier-based reference to an 
“external” ontology is highly preferable. An external ontology 
reference provides: a definition and relationships to other classes 
from that external ontology; the ability to track when the same 
class is referenced in yet a third ontology; and the ability to parallel
any error corrections or other enhancements that the external 
ontology makes (keeping the ontologies “in sync”). In addition, 
using cross-references between ontologies limits the duplication 
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of terms and helps manage what might otherwise be an “explosion”
of combinatorial terms in any one ontology.

For example, the GO biological process ontology contains 
many terms describing the metabolism of specific compounds and 
differentiation of specific cell types. Work is under way to create 
explicit references to ChEBI (http://www.ebi.ac.uk/chebi/) for 
the former and the Cell Ontology for the latter, enabling these 
different ontologies to establish, maintain, and update mutually 
consistent representations (24, 26).

Formally correct ontologies support reasoning: In reasoning 
over an ontology, software (the “reasoner”) uses the network 
of classes and relationships explicitly specified in an ontology to 
check the ontology for errors, discover the logical implications of 
existing structures, and suggest new terms that might be added 
to the ontology. Reasoning is thus extremely useful for keeping 
an ontology internally consistent, in that it can spot certain kinds 
of inconsistencies, such as redundancies, missing terms, or missing 
relationships, and can make implied relationships explicit. 
Reasoning is only possible in ontologies that have complete is_a
paths (see Relationship Types); this is a key reason why is_a com-
pleteness is important and desirable.

Formal ontologies make three fundamental distinctions: continuants
vs. occurrents; dependents vs. independents; and types vs. instances.
Although the terminology is unfamiliar to biologists, these dis-
tinctions are readily illustrated in familiar terms, as well as being 
essential to ontological integrity.

Continuants have continuous existence in time. They can 
gain or lose parts, preserving their identity through change; they 
exist in toto whenever they exist at all. Occurrents are events that 
unfold in time, and never exist as wholes. For example, the com-
plexes and structures represented in the GO cellular component 
ontology are continuants, whereas the events in the GO biological 
process ontology are occurrents.

Dependent entities require independent continuants as their 
bearers; for example, the molecular weight of a protein makes 
sense only if there is a protein.

All occurrents are dependent entities; they require independent 
entities to carry them out. For example, a biological process such 
as translation requires mRNA, ribosomes, and other molecules 
and complexes.

The type/instance distinction: Ontologies generally include 
types/classes, and not instances, as an example, the GO term 
“mitochondrion” is a class, and refers to mitochondria gener-
ally; any particular mitochondrion existing in any actual cell 
would be an instance of the class (see Note 4). Nevertheless, 
it is worthwhile to think about the instances, because they are 
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the members (in reality) of the classes in the ontology, and 
considering instances helps developers figure out which classes 
are required and what the relationships between them should 
be. Instances are also highly relevant to the question of how the 
ontology will be used.

Relationship types commonly used in biomedical ontologies 
include (in addition to is_a) part_of and derives_from; the latter 
is also known as develops_from and is used to capture lineage, as 
in anatomy ontologies and the Cell Type ontology (CL; http://
obo.sourceforge.net/cgi-bin/detail.cgi?cell).

Additional relationships such as has_participant, which can 
relate events to the entities involved in them (see “continuants 
and occurrents” in the preceding), are also becoming more 
widely used in biological ontologies. The OBO relationship types 
ontology (OBO_REL) (21) provides a set of core relationships, 
with formal definitions, that can be used in any ontology; like any 
OBO ontology, OBO_REL can be extended with new types as 
the need arises. As with other ontological formalisms, using the 
OBO relationship types allows an ontology to take advantage of 
shared tools and to be usefully aligned with other ontologies.

Ideally, ontologies should be “is_a complete,” i.e., every 
term should have an is_a parent, resulting in unbroken paths via 
is_a relationships from any term to the root (see Note 5). This 
completeness makes computational ontology use much easier; 
indeed, most tools for developing or using ontologies (including 
Protégé) require is_a completeness. Complete is_a paths are also 
achievable for a bio-ontology with a reasonable amount of effort, 
especially when starting from scratch. Retrofitting an existing 
ontology to add complete is_a paths is also feasible.

Every term and relationship in an ontology should have a single 
meaning.

Examples: biology poses two types of challenge in achieving 
univocity. The first is simple: there may be many words or phrases 
used to refer to a single entity. This is easily resolved by the inclu-
sion of synonyms; also, an ontology may include related but not 
exactly synonymous terms for query support, as in the GO term 
“protein polyubiquitination” (GO:0000209), for which both 
exact synonyms (“protein polyubiquitinylation” and “protein 
polyubiquitylation”) and a related text string (“polyubiquitin”) 
are noted.

A more difficult situation arises when a single word or phrase 
is used to mean different things; often different research com-
munities have adopted terminology that is unambiguous within 
a field or for a species, only to “clash” with another community’s 
usage when ontology development efforts attempt to unify the 
respective bodies of knowledge. One example in GO has been 
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resolved fairly simply: the phrase “secretory vesicle” has been used 
with two meanings, which are captured in GO as two separate 
entities, “secretory granule” (GO:0030141) and “transport vesicle”
(GO:0030133). The string “secretory vesicle” is included as a 
related string for each.

Complements of classes are not themselves classes; terms in an 
ontology should be defined based on what they are (i.e., proper-
ties they possess), not on what they are not. For example, terms 
such as “non-mammal” or “non-membrane” do not designate 
genuine classes (see Note 6).

Which classes exist does not depend on our biological knowledge. 
Terms such as “unknown,” “unclassified,” or “unlocalized” thus 
do not designate biological natural kinds, and are not suitable 
ontology classes.

For example, GO contains terms representing G-protein cou-
pled receptor (GPCR) activities, and at the time of writing these 
included the term “G-protein coupled receptor activity, unknown 
ligand (GO:0016526).” To improve objectivity, GO intends to 
make the “unknown ligand” term obsolete, and use the parent term 
“G-protein coupled receptor activity (GO:0004930)” to annotate 
gene products that are GPCRs whose ligands are unknown. Note 
that no actual information is lost by making this change.

The terms used in a definition should be simpler (more intelligible)
than the term to be defined (see Note 7).

When building or maintaining an ontology, always think care-
fully about how classes relate to instances in reality. In GO, for 
example, the actual gene products that might be annotated with 
an ontology term provide guidance for the term name, relation-
ships, definition, etc.

No class in a classification hierarchy should have more than one 
is_a parent on the immediate higher level. The rationale for this 
recommendation is that single inheritance will result if an ontology 
rigorously ensures that the is_a relationship is used univocally 
(see Note 8).

This chapter provides an overview of practical and formal aspects 
of ontology development. For any domain, the best ontological 
representation depends on what must be done with the ontology;
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there is no single representation that will meet all foreseeable 
needs. Experience with bio-ontologies such as GO has shown that 
ontologies can and must continue to develop as their user com-
munities grow and ontology use becomes more widespread. Many 
factors are now combining to speed and enhance bio-ontology 
development, such as the increasing availability of sophisticated 
tools, broader application of ontology alignment, and efforts to 
provide a shared set of core ontologies (OBO Foundry) and eval-
uate existing ontologies. The development and use of ontologies 
to support biomedical research can thus be expected to continue 
apace, providing more and better support for primary research 
and the dissemination of biomedical knowledge.

 1. In philosophy, ontology is the study of what exists. The word 
“ontology” has also been adopted in the computer science 
community to refer to a conceptualization of a domain, 
although such conceptualizations might more accurately be 
called epistemologies. Further discussion of the various inter-
pretations of “ontology” is beyond the scope of an introduc-
tory guide.

 2. Protégé and OBO-Edit are both ontology editing tools, and 
have many similarities. The fundamental difference between 
them is that Protégé has a predominantly object-centered 
perspective, whereas OBO-Edit emphasizes a graph-structure-
centered perspective. The two tools thus have similar 
capabilities but are optimized for different types of ontologies
and different user requirements.

 3. For additional information, see the documentation on 
“GO slim” sets at http://www.geneontology.org/
GO.slims.shtml.

 4. Some ontologies do include instances (such as the exam-
ple ontology in the excellent tutorial by N. F. Noy and D. 
L. McGuinness; see http://protege.stanford.edu/
publications/ontology_development/ontol-
ogy101-noy-mcguinness.html), but in the biomedi-
cal domain ontologies that explicitly exclude instances are far 
more prevalent. For this reason inclusion of instances is not 
covered herein.

 5. At present, several OBO ontologies, are not is_a complete, 
but adding complete is_a parentage is a development 
goal.

 6. There are cases in which the language typically used in biological 
literature poses challenges for achieving positivity. For example, 
the GO terms “membrane-bound organelle (GO:0043227)” 
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and “non–membrane-bound organelle (GO:0043228).” 
The latter appears to violate the principle of positivity, but this 
is due to the limitations of the language used to express the 
concept—and represent the entity—of an organelle bounded 
by something other than a membrane. There is an essential 
distinction between “non–membrane-bound organelle” and 
“not a membrane-bound organelle”: The former is still 
restricted to organelles, and excludes those surrounded by 
membranes, whereas the latter encompasses everything that is 
not a membrane-bound organelle.

 7. In some cases, accurate but simple terminology is not readily 
available. The most notable examples are chemical names, 
which are often used in definitions of terms representing 
biochemical reactions or metabolic processes (GO molecular 
function and biological process, respectively), as well as 
being entity names in their own right (in ChEBI).

 8. Of all the desired features of formal ontologies, single inher-
itance is the hardest to achieve in practice in an ontology for 
a biological domain. Because disentangling multiple parent-
age takes considerable effort, single inheritance is enforced 
in very few bio-ontologies currently in use.

The author thanks Tim Rayner and Jane Lomax for valuable 
comments on the manuscript. The chapter content makes exten-
sive use of material made available from the ISMB 2005 tutorial 
on “Principles of Ontology Construction” prepared by Suzanna 
Lewis, Barry Smith, Michael Ashburner, Mark Musen, Rama 
Balakrishnan, and David Hill, and of a presentation by Barry 
Smith to the GO Consortium.
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Chapter 6

Genome Annotation

Hideya Kawaji and Yoshihide Hayashizaki

Abstract

The dynamic structure and functions of genomes are being revealed simultaneously with the progress of 
genome analyses. Evidence indicating genome regional characteristics (genome annotations in a broad 
sense) provide the basis for further analyses. Target listing and screening can be effectively performed 
in silico using such data. This chapter describes steps to obtain publicly available genome annotations or 
construct new annotations based on your own analyses, as well as an overview of the types of available 
genome annotations and corresponding resources.

Keywords: genome annotation, the UCSC Genome Browser, Ensembl, the Generic Genome 
Browser, GFF format, database.

Genome sequencing of human and model organisms has made pos-
sible genome analyses that reveal dynamic structures and functions 
of genomes, in addition to mere nucleotide sequences. Evidence 
indicating genome regional characteristics, which are genome anno-
tations in a broad sense (see Note 1), provide the basis for further 
analyses as well as help us to understand the nature of organisms. 
All genome-wide analyses are in this sense potential resources for 
genome annotations.

At the time when genome sequencing itself was a challenging 
issue, genome annotation mainly referred to gene structure, that is, 
the boundaries of exons/introns and CDS (coding sequence)/UTR 
(untranslated regions) at protein-coding loci. Gene products and 
their loci were the major interest (1). Genome-wide analyses in the 
“post-genome sequencing era” revealed additional aspects: a significant 
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number of non-coding RNAs (2), the fact that the majority of mam-
malian genomes are transcribed (2), a large number of antisense 
transcriptions (3), dynamic expression profiles under various condi-
tions (4), epigenetic modifications of nucleotides (5) and nucleo-
proteins (6) related to development and cancer, genome sequence 
conservation among various species (7), and a large number of poly-
morphisms among individuals and haplotypes (8). “Post-genome” 
annotations have accumulated at an increasing rate, especially for 
human and model organisms, and attract wide interest.

Genome annotations can be combined with other annotations 
derived from distinct methods or viewpoints based on genomic 
coordinates, even if they are less comprehensive. This kind of 
integration will result in a more complete view of genomes. 
Full utilization of annotations is essential not only for compre-
hensive “-omics” analysis, but also for systems-based analysis of 
specific biological phenomena. Such analyses require listing of 
possible targets, target screening and setting of priorities prior 
to analysis, and interpretation of the analysis results. Each step 
can be performed effectively by retrieving public annotations of 
interest, constructing in-house annotations, combining them, 
and extracting relevant attributes from these combined data.

This chapter explains how to use various genome annota-
tions, including steps to make your own. Public annotations and 
resources are described in the Materials section, and the required 
steps for using genome annotations are described in the Methods.

A significant number of genome annotations are available and 
published already, and the number is increasing. This is a gen-
eral overview of genome annotations and major resources to sim-
plify your choice of annotations. Subsequently, data formats are 
described with which one should be familiar in order to under-
stand and use annotation files.

 1. The complete structure of transcripts (or mRNA), in 
terms of exons and introns, can be derived from sequence 
alignments of full-length cDNA with the genome. ESTs 
(expressed sequence tags) can be sequenced at lesser cost, 
but contain only partial (5′- or 3′-end) structures. Short tag-
based technologies, such as CAGE, 5′-SAGE, GIS, and GSC 
were developed for characterization of transcript boundaries 
with high throughput (9). The first two techniques characterize 
5′-ends of transcripts, and the other two characterize both 
ends using sequencing paired-end di-tags (called PETs).
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 2. Genome-wide transcription levels can be profiled by DNA 
microarrays. The number and properties of probes in an 
array limit the number of transcripts that can be profiled in 
a single experiment. However, high-density genomic oligo-
nucleotide arrays enable us to profile entire genomes based 
on designed probes in certain intervals (10). Customized 
microarrays enable us to focus on regions of interest. High 
throughput sequencing of short tags also enables monitor-
ing of transcription levels by counting sequenced tags, as 
well as characterization of transcript structures (9).

 3. The binding of DNA to transcription factors (proteins par-
ticipating in transcription and transcriptional regulation) can 
be identified by ChIP (chromatin immunoprecipitation). 
An antibody targets the protein of interest and its associated 
DNAs can be found by expression profiling techniques, for 
example, DNA microarrays (ChIP/chip) (11) and sequenc-
ing paired-end di-tags (ChIP/PETs).

 4. Computational predictions, such as transcript structure and 
transcription factor binding sites (TFBSs), are also useful for 
finding possible targets for analysis.

 1. Eukaryotic genomic DNA is coupled with histones to com-
prise nucleosomes, and chromatin on a higher level. Modifi-
cations and the status of these structures affect transcription 
regulation. The combination of these annotations with tran-
script structures and transcriptional activities will be useful 
for understanding of the detailed machinery of such modifi-
cations and structures in transcription regulation.

 2. DNA methylation occurs in CpG dinucleotides, which are 
involved in epigenetic transcription regulation. It is called epi-
genetic because it is not encoded in the genome sequence 
itself. CpG methylation can be detected by bisulfite PCR. 
High throughput analyses based on methylation-sensitive 
restriction enzymes find differentially methylated DNA in 
several ways, such as two-dimensional electrophoretograms in 
Restriction Landmark Genomic Scanning (RLGS, a compu-
tational method to map each spot to the genome is called Vi-
RLGS), sequencing in Methylation Sensitive Representational 
Difference Analysis (MS-RDA), and DNA microarrays (12).

 3. Post-translational histone modifications, such as acetyla-
tion of histone H3 at K9 and methylation of histone H3 
at K4, are also epigenetic modifications and are associated 
with transcriptional activities (6). A modified histone can be 
detected in ChIP analysis by using an antibody specific to 
modified histones.

 4. Profiling nuclease sensitivity is an approach to reveal nucle-
osome structure. Both DNase-I and micrococcal nuclease 
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(MNase) digest nucleosome-free regions: The former tend 
to digest random sites and the latter digest linker sites. Of 
them, DNase-I hypersensitive sites have been widely used 
for identifying regulatory elements (6).

 1. Genome sequence conservation among species provides sig-
nificant information for genome analyses, because conserva-
tion reflects the action of natural selection. Coding regions 
in genomes are generally more conserved than non-coding 
regions. Cis-elements within promoters tend also to be con-
served. Interestingly, promoter regions of non-coding tran-
scripts (ncRNA) are also conserved, whereas ncRNA exons 
tend to be less conserved (2). Conserved regions are pos-
sible candidates for functional elements in the genome, and 
comparisons between all types of genome annotations will 
be useful, especially for target screening or priority settings 
prior to analysis.

 2. There are ultra-conserved regions in the human genome, 
where an almost complete identity is observed between 
orthologous regions of rat and mouse, and a high conserva-
tion with the corresponding sequence in chicken, dog, and 
fish (13). The functions of these elements are still unclear. 
Clues to their function may be obtained by associating them 
with various genome annotations.

 3. Genetic variations among individuals and groups have a great 
significance to our understanding and treatment of diseases. 
Single nucleotide polymorphisms (SNPs) and haplotypes 
(a particular combination of SNP alleles along a chromosome)
(8) have proved to be a promising resource for analyses of 
genetically based human diseases.

 1. International collaborations or projects have published 
many genome annotations, some of them focused on human 
(Table 6.1). For example, the ENCODE (ENCyclopedia 
Of DNA Elements) project focused on small regions (about 
1%) of the human genome in a pilot phase, while evaluat-
ing various annotation methods. Selected methods will be 
expanded to the entire genome in future. The Genome 
network project/FANTOM (Functional Annotation Of 
Mammalian) focuses on mammalian genomes, especially 
human and mouse. The Human epigenome project focus on 
DNA methylation, and the international HapMap project 
focuses on variations among human individuals.

 2. Databases storing genome annotations, including those main-
tained by the above collaborations, are listed in Table 6.2. Some 
of them maintain data derived from dozens of organisms: the 
UCSC Genome Browser Database (14), Ensembl (15), TIGR’s 
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Table 6.1
Collaboration efforts for human genome annotations

Collaboration effort URL

The ENCODE project http://www.genome.gov/10005107

Genome network project/
FANTOM

http://genomenetwork.nig.ac.jp/
http://fantom.gsc.riken.jp/

Human epigenome project http://www.epigenome.org/

International HapMap project http://www.hapmap.org/

Table 6.2
Resources of genome annotations

Resources for wide 
range of organisms URL

The UCSC 
Genome Browser 
Database

http://genome.ucsc.edu/

Ensembl http://www.ensembl.org/

TIGR’s genome 
project

http://www.tigr.org/db.shtml

MIPS http://mips.gsf.de/

Resources for 
specific organisms URL Organism(s)

Genome network 
project/ 
FANTOM

http://genomenetwork.
nig.ac.jp/

http://fantom.gsc.riken.jp/

Human,
Mouse

MGD http://www.informatics.jax.org/ Mouse

FlyBase http://flybase.bio.indiana.edu/ Drosophila

WormBase http://www.wormbase.org/ Caenorhabdi-
tis elegans

TAIR http://www.arabidopsis.org/ Arabidopsis
thaliana

GRAMENE http://www.gramene.org/ Grass

RAP-DB http://rapdb.lab.nig.ac.jp/ Rice

SGD http://www.yeastgenome.org/ Yeast
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genome project (http://www.tigr.org/db.shtml), and MIPS 
(16). Others focus on specific organisms; for example, the 
Genome network project/FANTOM (2), MGD (17),
FlyBase (18), WormBase (19), TAIR (20), GRAMENE (21),
RAP-DB (22), SGD (23), and other databases (see Note 2).

A standard web browser, such as Internet Explorer or Mozilla 
Firefox, is all that is needed to browse and acquire public anno-
tations of interest. This section describes a format for genome 
annotation; General Feature Format (GFF). Although some vari-
ations of GFF have been proposed (Note 3), we mainly refer 
to GFF version 2 (http://www.sanger.ac.uk/Software/formats/
GFF/), which is widely supported. All of these formats are easy 
to understand, parse, and process by lightweight programming 
languages, such as Perl, Python, or Ruby.

 1. This format consists of tab-delimited text with nine columns 
(Fig. 6.1). Although there are some variations of this for-
mat, the differences are only in the ninth column. The first 
column describes the sequence or chromosome name.

 2. The second describes the source of this feature, or the 
method used for acquiring the sequence. Distinguishable 
data strings are required if you intend to compare the same 
type of annotations derived from distinct databases, experi-
mental procedures, and computational methods.

 3. The third describes the type of this feature, such as “exon,” 
“CDS,” and “gap.” Using a standard nomenclature, such as 
DDBJ/EMBL/GenBank feature table (http://www3.ebi.
ac.uk/Services/WebFeat/) and sequence ontology (http://
song.sourceforge.net/), is recommended to distinguish fea-
tures annotated for the same target.

 4. The fourth describes the feature’s start position.
 5. The fifth describes the feature’s end position.
 6. The sixth describes a numerical value as an attribute to the 

feature. There is no recommendation for what kinds of 
values should be described, and “.” (dot) is used for no value. 

2.2. Data Format2.2. Data Format

2.2.1. General Feature 
Format
2.2.1. General Feature 
Format

chr7   RefSeq         exon  86599192   86599411   0   -   .   accession "NM_007233";

chr7   RefSeq         exon  86615490   86615651   0   -   .   accession "NM_007233";

chr7   RefSeq         exon  86619010   86619482   0   -   .   accession "NM_007233";

chr7   DDBJ_EST   exon  86618772   86619496   0   -   .   accession "BG709171";

chr7   dbSNP          SNP  86619052   86619052   0   .   .   accession "rs5885579"; 

Fig. 6.1. GFF version 2 formatted annotations. A plain text formatted in GFF version 
2, containing some genome annotations, where all blanks except for the spaces after 
“accession” are TAB characters. It contains annotations for a RefSeq transcript with 
three exons, an EST deposited in DDBJ, and a SNP deposited in dbSNP.
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The ninth column described below can also be used for the 
feature’s values, where multiple values can be described.

 7. The seventh describes the feature’s strand: “+” for forward and 
“−” for reverse strand. “.” (dot) is used when the strand is not 
relevant, such as dinucleotide repeats and conserved regions.

 8. The eighth column carries “0,” “1,” or “2,” describing a 
phase of this feature relative to the codon. The value “0” 
means the first position of the feature corresponds to the 
first base of the codon, and “1” and “2” means for the sec-
ond and third position of the codon, respectively. It is valid 
only for CDS features, and “.” (dot) is used in other cases.

 9. The ninth column describes multiple attributes, which con-
sist of name and value pairs separated by “ ” (space), and 
multiple attributes separated by “;” (semicolon). You can 
use this column for additional information not described in 
the above columns.

A first step to use genome annotations is to browse and export 
annotations of interest from the publicly available databases. In 
addition to describing this, steps to construct and share annota-
tions based on your own analysis are also described. This section 
focuses on three tools widely used to store and display genome 
annotations: the UCSC Genome Browser (24), the Ensembl 
Genome Browser (25), and the Generic Genome Browser 
(GBrowse) (26). Some tools or software for further use are men-
tioned in Notes 4–7.

 1. Open a URL of a genome annotation database with a stand-
ard web browser.

 2. Search for the element you are interested in. The UCSC browser 
has text boxes entitled “position or search term” or “position/
search,” GBrowse has “Landmark or region,” and Ensembl has 
“Search” at the upper right of the page. If the entries found are 
directly hyperlinked to their main views, skip Step 3.

 3. If you already know the genomic coordinates for your 
sequence, you can specify them directly. A concatenated 
string of chromosome number, start, and stop position 
(example: “chr7:127,471,196-127,495,720”) works for the 
UCSC browser and GBrowse. Ensembl has separate inter-
faces for chromosome number and start and stop coordi-
nates. It is important to consider the genome assembly to 
which your coordinates are referring.

3. Methods3. Methods

3.1. Browsing and 
Obtaining Public 
Annotations

3.1. Browsing and 
Obtaining Public 
Annotations
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 4. A graphical view of genome annotations for the specified 
region is displayed after the above steps (Figs. 6.2 to 6.4).

 5. Select annotations and type of views to be displayed. 
Although you can select views on the same page as the main 
browsing page, additional customization pages are available 
from the “configure” and “Set track options” buttons in the 
UCSC browser and GBrowse, respectively. You can reach 
an interface to select views from the menus at the top of 
“Detailed view” in Ensembl (Figs. 6.2 to 6.4).

Home Genomes Blat Tables Gene Sorter PCR DNA Convert Ensembl NCBI PDF/PS Help

UCSC Genome Browser on Human May 2004 Assembly
move zoomin zoom out

position/search size60,876bp.

move start Click on a feature for details. Click on base position to zoom in around
cursor. Click on left mini-buttons for track-specific options.

move end

Use drop down controls below and press refresh to alter tracks displayed.
Tracks with lots of items will automatically be displayed in more compact modes.

Mapping and Sequencing Tracks
Base Position Chromosome Band RGD QTL FISH Clones

Search

Zoom & scroll
Export

}

Change feature shape

Home Genomes Blat Tables Gene Sorter PCR FAQ Help

Human (Homo sapiens) Genome Browser Gateway

The UCSC Genome Browser was created by the Genome Bioinformatics Group of UC Santa Cruz.
Software Copyright(c) The Regents of the University of California. All rights reserved.

clade genome assembly position or search term image width

Click here to reset the browser user interface settings to their defaults.

A. Gateway page for the UCSC Genome Browser

B. Main page of the UCSC Genome Browser

Upload your own annotations, and
use shared annotations

STS Markers

Fig. 6.2. The UCSC Genome Browser. Screenshots of the UCSC Genome Browser, dis-
playing a locus of TP53 activated protein 1. (A) A gateway page. (B) A main graphical 
view of genome annotation.
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 6. Scroll up and down; zoom in and out of the displayed region. 
Intuitive interfaces are provided by the databases (Figs. 6.2
to 6.4).

 7. Download the displayed annotations. For this purpose, the 
UCSC browser provides “Table browser,” which is hyper-
linked from the top of the main view. “Dump GFF file” 
plug-in in GBrowse and Export view in Ensembl are also 
available for this purpose (Figs. 6.2 to 6.4).

 1. Define or get genomic coordinates for your elements. If 
your aim is genome annotation based on your own tran-
script sequences with BLAST (27) as the alignment tool, 
a file of alignment results will be obtained by BLAST with 
−m9 option for a tab-delimited format (Fig. 6.5A). Note 

3.2. Make and Browse 
Your Own Annotations
3.2. Make and Browse 
Your Own Annotations

Showing 60.88 kbp from chr7, positions 86, 578, 899 to 86, 639, 774

[Show banner] [Show instructions] [Book mark this view] [Link to an image of this view][Publication quality image] [Help]

Please use CAGE Analysis Viewer for your search of transcripts, CAGE tags, etc.

Landmark or Region
Flip

Scroll / Zoom:

[FANTOM3 main page] [VISTA Track] [UCSC]

Data Source Dumps, Searches and other Operations:

Tracks [Hide]

External tracks
italicized

*Overview track

00.Tag Cluster(TC) 30.CpG island 30.Simple repeat

20.Transcripts 30.Gap 40.Conserved Region (axt Net v.s Mm5)

23.Gene prediction 30.Repeat region

ImageW idth
300 450 640 800 1024
1600

Key position
Between Beneath Left
Right

Track Name Table
Alphabetic

Varying

Upload your own annotations: [Help]

Upload a file

Add remote annotations: [Help]

Enter Remote Annotation URL

Search Zoom & scroll Export

Feature select

}

Change feature shape

Upload your own annotation

Use shared annotations

Fig. 6.3. The Generic Genome Browser. A screenshot of the Generic Genome Browser (GBrowse) used in FANTOM3, 
displaying the same region as Fig. 6.2.
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Fig. 6.4. The Ensembl Genome Browser. A screenshot of the Ensembl Genome Browser, displaying the same region as 
Figs. 6.2 and 6.3.

Fig. 6.5. BLAST output and GFF format. (A) An output of BLAST with –m9 option, when two cDNA sequences are aligned 
with the human genome. (B) A GFF formatted data converted from the BLAST output.

Search

}

Zoom & scroll

Select feature

Export Change feature shape

# BLASTN 2.2.13 [Nov-27-2005]

# Query: myseq_1

# Database: genome.fa

# Fields: Query id, Subject id, % identity, alignment length, mismatches, gap openings,

q. start, q. end, s. start, s. end, e-value, bit score

myseq_1   chr7  100.00  213  0  0  1    213   86619482  86619270  6e-117  422

myseq_1   chr7  100.00  195  0  0  210  404   86619202  86619008  3e-106  387

myseq_1   chr7  100.00  165  0  0  400  564   86615654  86615490  3e-88   327

myseq_1   chr7  100.00  146  0  0  565  710   86599411  86599266  6e-77   289

# BLASTN 2.2.13 [Nov-27-2005]

# Query: myseq_2

# Database: genome.fa

# Fields: Query id, Subject id, % identity, alignment length, mismatches, gap openings,

q. start, q. end, s. start, s. end, e-value, bit score

myseq_2  chr7   100.00  607  0  0  544  1150  86633414  86634020  0.0       1156

myseq_2  chr7   100.00  188  0  0  301  488   86633171  86633358  9e-102  373

myseq_2  chr7   100.00  117  0  0  166  282   86623014  86623130  2e-59    232

chr7 myseq exon 86619270 86619482 . - . myID myseq_1

chr7 myseq exon 86619008 86619202 . - . myID myseq_1

chr7 myseq exon 86615490 86615654 . - . myID myseq_1

chr7 myseq exon 86599266 86599411 . - . myID myseq_1

chr7 myseq exon 86633414 86634020 . + . myID myseq_2

chr7 myseq exon 86633171 86633358 . + . myID myseq_2

chr7 myseq exon 86623014 86623130 . + . myID myseq 2

A. BLAST result

B. GFF formatted BLAST result
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that this is just a simple example for an explanation of these 
steps, and additional steps and/or other programs can be 
used for transcript structure annotations. If your aim is other 
types of annotation, you will have to prepare the required 
features and their genomic coordinates in different ways (see
Note 8).

 2. Make a genome annotation file from the coordinates. When 
the GFF format is used, source, type, and attributes col-
umns should be included. In this example, “myseq” is 
used for its source to distinguish from public  annotations, 
and “exon” is used for its type after checking the sequence 
ontology. A sample program written in Perl (Fig. 6.6)
converts the previous BLAST result into GFF format 
(Fig. 6.5B).

 3. Upload your own annotation to public genome browsers 
to get its graphical view. In this case, public databases and 
your own analyses have to use the same genome assembly to 
share the same coordinate system. You can use the “add your 
own custom tracks” button on the top page in the UCSC 
genome browser, the “Upload your own annotation” box 
in GBrowse, and the “URL based data” from the “DAS 
source” menu in Ensembl (Fig. 6.2 to 6.4) (see Note 9).
An example of the image displayed by the UCSC browser is 
in Fig. 6.7.

 4. In order to share your annotation, place it on your own ftp 
or http server. Others can also get the same graphical view 
by specifying its URL on genome browsers.

#!/usr/bin/env perl

while(<>){

  next if /^#/;                                    # Skip comments

  my @c = split(/\t/,$_);                          # Parse a feature

  my ($start,$end,$strand) = ($c[8],$c[9],"+");

  if ($start > $end) {                   # Correnct start, end, and strand

    $strand = "-";                       #   when the feature is

    ($start,$end) = ($end,$start);       #   on reverse strand

  }

                                         # Print the feature's

  print "$c[1]\tmyseq\texon\t",          #   chromosome, source, feature

        "$start\t$end\t.\t$strand\t.\t", #   start , end, score, strand, and phase

        "myID $c[0]\n"                   #   and attributes

}

Fig. 6.6. Sample code to convert BLAST output into GFF. A sample Perl code to convert a BLAST output (see Fig. 6.5A) into 
GFF (see Fig. 6.5B). It just parses columns in a line of its input, and prints the corresponding column in GFF.
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 1. In a narrow sense, genome annotation means annotation of 
genes on genomes, based on supporting evidence, such as 
mRNA alignment with genome sequences, computational 
predictions of exons, and others.

 2. Additional databases for genome annotations are not listed 
here, and the number is increasing. The annual database 
issue and the molecular biology database collection (28)
published by Nucleic Acids Research will be helpful to find 
appropriate databases for your analysis.

 3. Major variations of GFF are GFF version 1, 2 (http://www.
sanger.ac.uk/Software/formats/GFF/), and 3 (http://song. 
sourceforge.net/gff3.shtml). The differences are only in the 
ninth column: version 1 requires just one string rather than 
a pair of name and value, and version 3 requires value name 
to be concatenated with its value by “=” (equal). Some key-
words are reserved for specific use in GTF (Gene  Transfer 
Format (http://genes.cs.wustl.edu/GTF2.html), a format 
based on GFF version 2 with some special attribute names.

 4. Software used in the public genome annotation databases 
is available for setting up your own annotation data-
base. Source codes of the UCSC Genome Browser (24)
and Ensembl Genome Browser (25) are convenient for 
mirroring their annotations and setting up modified 
or additional version. The Generic Genome Browser 

4. Notes4. Notes

chr7:

User Track

Conservation

86585000 86590000 86595000 86600000 86605000 86610000 86615000 86620000 86625000 86630000 86635000
User Supplied Track

RefSeq Genes

Human mRNAs from GenBank

Hu/Chimp/Mouse/Rat/Dog/Chick/Fugu/Zfish Multiz Alignments & Conservation

TP53AP1
CROT

AB007455
AB007456
BC061927
AB007457
AB007458
BC002709
BC103631

BC068535
CR601454

BT009845
CR542141

AK127901
BC051874
BC039004
BC012483
BC019226
AF168793
AF073770

BC006015

}

Added annotations

Fig. 6.7. Graphical display of uploaded annotations. An example of the graphical display in the UCSC Genome Browser 
when the annotations of the Fig. 6.5B are uploaded.
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(GBrowse) (26) is convenient for setting up a genome 
annotation browser mainly based on your original 
annotations, as well as public ones.

 5. The distributed annotation system (DAS, http://www.
biodas.org/) also can be used to share your own annotations.
Based on a client-server model, some genome annotation data-
base systems, such as Ensembl and GBrowse, can also work 
as DAS clients, and use the DAS server to display annota-
tions stored in the databases and DAS server.

 6. The UCSC Table Browser (29) and BioMart (30) focus 
on exporting data with complex queries, or combinations 
of some conditions. Web interfaces to specify conditions 
are available by setting up those systems with your own 
annotations. These are convenient to retrieve annotations 
genome-wide, rather than just in the displayed region.

 7. Stand-alone applications for browsing (and editing) genome 
annotations are also available, such as Integrated Genome 
Browser (IGB, http://genoviz.sourceforge.net/) and Apollo 
(31). They are convenient if you need to avoid uploading 
your data for some reason.

 8. Besides transcript sequences, experimental results based on 
DNA microarray and PCR can be mapped on genomes. 
Genomic coordinates of microarray probes will be derived 
from probe annotations or probe sequence alignments with 
genomes by general alignment tools such as BLAST (27),
FASTA (32), SSAHA (33), and BLAT (34). More specific 
tools such as primersearch in EMBOSS (35) are convenient 
to identify genomic coordinates of PCR products.

 9. There is an inconsistency in chromosome name between 
the UCSC Genome Browser Database and Ensembl. The 
former use a chromosome number with a string “chr,” for 
example, “chr22,” but the latter use a chromosome number 
such as “22.” This is just a tiny difference, but you have to 
be careful because annotations will not be displayed if the 
wrong name is used to refer to a sequence.
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Chapter 7

Multiple Sequence Alignment

Walter Pirovano and Jaap Heringa

Abstract

Multiple sequence alignment (MSA) has assumed a key role in comparative structure and function analysis
of biological sequences. It often leads to fundamental biological insight into sequence-structure-function
relationships of nucleotide or protein sequence families. Significant advances have been achieved in this 
field, and many useful tools have been developed for constructing alignments. It should be stressed, 
however, that many complex biological and methodological issues are still open. This chapter first pro-
vides some background information and considerations associated with MSA techniques, concentrating 
on the alignment of protein sequences. Then, a practical overview of currently available methods and a 
description of their specific advantages and limitations are given, so that this chapter might constitute a 
helpful guide or starting point for researchers who aim to construct a reliable MSA.

Key words: multiple sequence alignment, progressive alignment, dynamic programming, phylo-
genetic tree, evolutionary scheme, amino acid exchange matrix, sequence profile, gap penalty.

A multiple sequence alignment (MSA) involves three or more 
homologous nucleotide or amino acid sequences. An alignment of 
two sequences is normally referred to as a pairwise alignment. The 
alignment, whether multiple or pairwise, is obtained by inserting 
gaps into sequences such that the resulting sequences all have the 
same length L. Consequently, an alignment of N sequences can be 
arranged in a matrix of N rows and L columns, in a way that best 
represents the evolutionary relationships among the sequences.

Organizing sequence data in MSAs can be used to reveal 
conserved and variable sites within protein families. MSAs can 
provide essential information on their evolutionary and functional

1. Introduction1. Introduction

1.1. Definition 
and Implementation 
of an MSA
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relationships. For this reason, MSAs have become an essential 
prerequisite for genomic analysis pipelines and many down-
stream computational modes of analysis of protein families such 
as homology modeling, secondary structure prediction, and phy-
logenetic reconstruction. They may further be used to derive 
profiles (1) or hidden Markov models (2, 3) that can be used to 
scour databases for distantly related members of the family. As 
the enormous increase of biological sequence data has led to the 
requirement of large-scale sequence comparison of evolutionarily 
divergent sets of sequences, the performance and quality of MSA 
techniques is now more important than ever.

The automatic generation of an accurate MSA is computation-
ally a tough problem. If we consider the alignment or matching 
of two or more protein sequences as a series of hypotheses of 
positional homology, it would obviously be desirable to have a
priori knowledge about the evolutionary (and structural) rela-
tionships between the sequences considered. Most multiple 
alignment methods attempt to infer and exploit a notion of such 
phylogenetic relationships, but they are limited in this regard by 
the lack of ancestral sequences. Naturally, only observed taxo-
nomic units (OTUs), i.e., present-day sequences, are available. 
Moreover, when evolutionary distances between the sequences 
are large, adding to the complexity of the relationships among 
the homologous sequences, the consistency of the resulting MSA 
becomes more uncertain (see Note 1).

When two sequences are compared it is important to consider 
the evolutionary changes (or sequence edits) that have occurred 
for the one sequence to be transformed into the second. This is 
generally done by determining the minimum number of muta-
tions that may have occurred during the evolution of the two 
sequences. For this purpose several amino acid exchange matrices, 
such as the PAM (4) and BLOSUM (5) series, have been devel-
oped, which estimate evolutionary likelihoods of mutations and 
conservations of amino acids. The central problem of assembling 
an MSA is that a compromise must be found between the evolu-
tionarily most likely pairwise alignments between the sequences, 
and the embedding of these alignments in a final MSA, where 
changes relative to the pairwise alignments are normally needed 
to globally optimize the evolutionary model and produce a con-
sistent multiple alignment.

Pairwise alignment can be performed by the dynamic program-
ming (DP) algorithm (6). A two-dimensional matrix is constructed 
based on the lengths of the sequences to be aligned, in which 
each possible alignment is represented by a unique path through 
the matrix. Using a specific scoring scheme, which defines scores 
for residue matches, mismatches, and gaps, each position of the 
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matrix is filled. The DP algorithm guarantees that, given a specific 
scoring scheme, the optimal alignment will be found. Although 
dynamic programming is an efficient way of aligning sequences, 
applying the technique to more than two sequences quickly 
becomes computationally unfeasible. This is due to the fact that 
the number of comparisons to be made increases exponentially 
with the number of sequences. Carrillo and Lipman (7) and 
more recently Stoye et al. (8) proposed heuristics to reduce the 
computational requirements of multidimensional dynamic pro-
gramming techniques. Nonetheless, computation times required 
remain prohibitive for all but the smallest sequence sets.

An important breakthrough in multiple sequence alignment has 
been the introduction of the progressive alignment protocol 
(9). The basic idea behind this protocol is the construction of 
an approximate phylogenetic tree for the query sequences and 
repeated use of the aforementioned pairwise alignment algorithm. 
The tree is usually constructed using the scores of all-against-
all pairwise alignments across the query sequence set. Then the 
alignment is build up by progressively adding sequences in the 
order specified by the tree (Fig. 7.1), which is therefore referred 
to as the guide tree. In this way, phylogenetic information is 
incorporated to guide the alignment process, such that sequences 
and blocks of sequences become aligned successively to produce 
a final MSA. Fortunately, as the pairwise DP algorithm is only 
repeated a limited number of times, typically on the order of the 
square of the number of sequences or less, the progressive pro-
tocol allows the effective multiple alignment of large numbers of 
sequences.

1.4. The Progressive 
Alignment Protocol
1.4. The Progressive 
Alignment Protocol

Fig. 7.1. Schematic representation of the progressive alignment protocol. A similarity 
(distance) matrix, which contains scores from all pairwise alignments, is used to con-
struct a guide tree. The final alignment is built up progressively following the order of 
the guide tree. The black arrow between brackets indicates possible iterative cycles.
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However, the obtained accuracy of the final MSA suffers from 
the so-called greediness of the progressive alignment protocol; that 
is, alignment errors cannot be repaired anymore and will be propa-
gated into following alignment steps (“Once a gap, always a gap”). 
In fact, it is only later during the alignment progression that more 
information from other sequences (e.g., through profile represen-
tation) (1) becomes employed in the alignment steps.

Triggered by the main pitfall of the progressive alignment sce-
nario, some methods try to alleviate the greediness of this strategy 
by implementing an iterative alignment procedure. Pioneered by 
Hogeweg and Hesper (10), iterative techniques try to enhance the 
alignment quality by gleaning increased information from repeated 
alignment procedures, such that earlier alignments are “corrected” 
(10, 11). In this scenario, a previously generated MSA is used for 
improvement of parameter settings, so that the initial guide tree 
and consequently the alignment can be optimized. Apart from 
the guide tree, the alignment procedure itself can also be adapted 
based on observed features of a preceding MSA. The iterative 
procedure is terminated whenever a preset maximum number of 
iterations or convergence is reached. However, depending on the 
target function of an iterative procedure, it does not always reach 
convergence, so that a final MSA often depends on the number of 
iterations set by the user. The alignment scoring function used dur-
ing progressive alignment can be different from the target function 
of the iteration process, so a decision has to be made whether the 
last alignment (with the maximal iterative target function value) or 
the highest scoring alignment encountered during iteration will be 
taken as the final result upon reaching convergence or termination 
of the iterations by the user.

Currently, a number of alternative methods are able to pro-
duce high-quality alignments. These are discussed in Section 3, 
as well as the options and solutions they offer, also with respect 
to the considerations outlined in the preceding.

Since sequence alignment techniques are based upon a model of 
divergent evolution, the input of a multiple alignment algorithm 
should be a set of homologous sequences. Sequences can be 
retrieved directly from protein sequence databases, but usually a set 
is created by employing a homology searching technique for a pro-
vided query sequence. Widely used programs such as BLAST (12)
or FASTA (13) employ carefully crafted heuristics to perform a 
rapid search over sequence databases and recover putative homologues. 
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Selected sequences should preferably be orthologous but in practice 
it is often difficult to ensure that this is the case. It is important to 
stress that MSA routines will also be capable of producing align-
ments of unrelated sequences that can appear to have some realistic 
patterns, but these will be biologically meaningless (“garbage in, 
garbage out”). For example, it is possible that some columns appear 
to be well conserved, although in reality no homology exists. Such 
misinterpretation could well have dramatic consequences for con-
clusions and further analysis modes. Although the development 
of P- and E-values to estimate the statistical significance of puta-
tive homologues found by homology searching techniques limits 
the chance of false positives, it is entirely possible that essentially 
non-homologous sequences enter the alignment set, which might 
confuse the alignment method used.

Query sequence sets comprise sequences with unequal length. 
The extent of such length differences requires a decision whether 
a global or local alignment should be performed. A global align-
ment strategy (6) aligns sequences over their entire length. How-
ever, many biological sequences are modular and contain shuffled 
domains (14), which can render a global alignment of two com-
plete sequences meaningless (see Note 2). Moreover, global align-
ment can also lead to incorrect alignment when large insertions of 
gaps are needed, for example, to match two domains A and B in a 
two-domain protein against the corresponding domains in a three-
domain structure ACB. In general, the global alignment strategy is 
appropriate for sequences of high to medium sequence similarity. 
At lower sequence identities, the global alignment technique can 
still be useful provided there is confidence that the sequence set is 
largely colinear without shuffled sequence motifs or insertions of 
domains. Whenever such confidence is not present, the local align-
ment technique (15) should be attempted. This technique selects 
and aligns the most conserved region in either of the sequences and 
discards the remaining sequence fragments. In cases of medium 
to low sequence similarity, local alignment is generally the most 
appropriate approach with which to start the analysis. Techniques 
have also been developed to align remaining sequence fragments 
iteratively using the local alignment technique (e.g., (16)).

A number of different alignment problems have been identified 
in the literature. For example, the BAliBASE MSA benchmark 
database (17) groups these in five basic categories that contain 
sequence sets comprising the following features:
 1. Equidistant sequences. Pairwise evolutionary distances between 

the sequences are approximately the same.
 2. Orphan sequences. One or more family members of the 

sequence set are evolutionarily distant from all the others 
(which can be considered equidistant).
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 3. Subfamilies. Sequences are distributed over two or more 
divergent subfamilies.

 4. Extensions. Alignments contain large N- and/or C-terminal 
gaps.

 5. Insertions. Alignments have large internal gap insertions.
The preceding classification of alignment problems opens up the 
possibility of developing different alignment techniques that are 
optimal for each individual type of problem. Other cases that 
are challenging for alignment engines include repeats, where 
different repeat types and copy numbers often lead to incorrect 
alignment (see Note 3), and transmembrane segments, where 
different hydrophobicity patterns confuse the alignment (see
Note 4). However, one would then need a priori knowledge 
about the alignment problem at hand (see Note 5), which can 
be difficult to obtain. A suggestion for investigators is to make 
a first (quick) multiple alignment using general parameter set-
tings. Often, after this first round, it becomes clear in which 
problem category the chosen sequence set falls, so that for fur-
ther alignment parameters can be set accordingly. Remember 
that alignments always can be manually adjusted by using one 
of the available alignment editors (see Note 6).

This section highlights a selection of the most accurate MSA 
methods to date (Table 7.1). Each of these follows one or both 
of two main approaches to address the greediness of the progres-
sive MSA protocol (see the preceding): the first is trying to avoid 
early match errors by using increased information for aligning 
pairwise sequences; the second is reconsidering alignment results 
and improving upon these using iterative strategies.

PRALINE is an online MSA toolkit for protein sequences. It 
includes a web server offering a wide range of options to opti-
mize the alignment of input sequences, such as global or local 
pre-processing, predicted secondary structure information, and 
iteration strategies (Fig. 7.2).
 1. Pre-profile processing options. Pre-profile processing is an 

optimization technique used to minimize the incorporation 
of erroneous information during progressive alignment. 
The difference between this strategy and the standard glo-
bal strategy is that the sequences to be aligned are repre-
sented by pre-profiles instead of single sequences. Three 
different options are available: (1) global pre-processing 
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Table 7.1
Web sites of multiple alignment programs mentioned 
in this chapter

Name Web site

PRALINE http://ibi.vu.nl/programs/
pralinewww/

MUSCLE http://www.drive5.com/muscle/

T-Coffee and 3D-Coffee http://igs-server.cnrs-mrs.fr/
Tcoffee/tcoffee_cgi/index.cgi

MAFFT http://align.bmr.kyushu-u.ac.jp/
mafft/online/server/

ProbCons http://probcons.stanford.edu/

SPEM & SPEM-3D http://sparks.informatics.iupui.
edu/Softwares-Services_files/
spem_3d.htm

Fig. 7.2. The PRALINE standard web interface. Protein sequences can be pasted in the upper box in FASTA format or 
directly uploaded from a file. In addition to using default settings, various alignment strategies can be selected (see
Section 3.1) as well as the desired number of iterations or preprocessing cut-off scores.
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(18,19), (2) local pre-processing (19), and (3) PSI-Praline 
(20). The first two options attempt to maximize the infor-
mation from each sequence. For each sequence, a pre-
profile is built containing information from other sequences in 
the query set. Under global pre-processing, other sequences 
can be selected according to a preset minimal pairwise align-
ment score with the main sequence within each pre-profile. 
Under local pre-processing, segments of other sequences in 
the query set are selected based on local alignment scores. 
The PSI-Praline pre-profile processing strategy employs the 
PSI-BLAST homology search engine (21) to enrich the infor-
mation of each of the pre-profiles. Based on a user-specified 
E-value, PSI-BLAST selects sequence fragments from a large 
non-redundant sequence database, building more consistent 
and useful pre-profiles for the alignment. The alignment qual-
ity of the PSI-Praline strategy is among the highest in the field 
(20), but the technique is relatively slow as a PSI-BLAST run 
needs to be conducted for every sequence in the input set.

 2. DSSP or predicted secondary structure information. PRALINE 
currently allows the incorporation of DSSP-defined second-
ary structure information (22) to guide the alignment. If 
no DSSP is available, a choice of seven secondary structure 
prediction methods is provided to determine the putative 
secondary structure of those sequences that do not have a 
PDB structure. In addition, two different consensus strate-
gies are also included, both relying on the prediction methods 
PSIPRED (23), PROFsec (24), and YASPIN (25).

 3. Iteration. For the above global and local pre-processing strat-
egies, iterative optimization is possible. Iteration is based on 
the consistency of a preceding multiple alignment, in which 
consistency is defined as the agreement between matched 
amino acids in the multiple alignment and those in corre-
sponding pairwise alignments. These consistency scores are 
then fed as weights to a next round of dynamic program-
ming. During iteration, therefore, consistent multiple align-
ment positions tend to be maintained, whereas inconsistent 
segments are more likely to become re-aligned. Iterations are 
terminated upon reaching convergence or limit cycle (i.e., a 
number of cyclically recurring multiple alignments), whereas 
the user can also specify a maximum number of iterations.

MUSCLE (26, 27) is multiple alignment software for both nucle-
otide and protein sequences. It includes an online server, but 
the user can also choose to download the program and run it 
locally. The web server performs calculations using pre-defined 
default parameters, albeit the program provides a large number 
of options. MUSCLE is a very fast algorithm, which should be 
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particularly considered when aligning large datasets. Basically, the 
progressive alignment protocol is sped up due to a clever pairwise 
sequence comparison that avoids the slow DP technique for the 
construction of the so-called guide tree. Because of the compu-
tational efficiency gained, MUSCLE by default employs iterative 
refinement procedures that have been shown to produce high-
quality multiple alignments.
 1. Iteration. The full iteration procedure used by MUSCLE 

consists of three steps, although only the last can be consid-
ered truly iterative.
a. In the first step sequences are clustered according to the 

number of k-mers (contiguous segment of length k) that 
they share using a compressed amino acid alphabet (28). 
From this the guide tree is calculated using UPGMA, 
after which the sequences are progressively aligned fol-
lowing the tree order.

b. During the next step the obtained MSA is used to con-
struct a new tree by applying the Kimura distance correc-
tion. This step is executed at least twice and can be repeated 
a number of times until a new tree does not achieve any 
improvements anymore. As a measure to estimate improve-
ment, the number of internal nodes for which the branch-
ing order has changed is taken. If this number remains 
constant or increases, the iteration procedure terminates 
and a last progressive alignment is built for this step.

c. Finally, the third step involves refinement of the alignment 
using the now fixed tree-topology. Edges from the tree 
are deleted in order of decreasing distance from the root. 
For each subdivision of the tree, the two corresponding 
profiles are aligned (tree-dependent refinement step). If a 
resulting alignment has a higher score than the previously 
retained alignment, the new alignment is taken. Iteration 
terminates if after traversing all tree edges no new align-
ment is produced or the user-defined number of itera-
tions has been reached.

 2. Large datasets. As outlined, one of the most important 
advantages of MUSCLE is that it is very fast and therefore 
allows handling large datasets in reasonable time. A good 
compromise between time and accuracy can be made by the 
user who can decide for all stages and actions whether to 
include them or not. As an additional option, the user can 
also define a time range in which the program will select the 
best solution so far. Another possibility to speed up the pro-
gram during pairwise k-mer alignment is provided by allow-
ing the user to switch off extending the k-words by dynamic 
programming (see the preceding). A final option, called 
“anchor optimization,” is designed to reduce computations 



152 Pirovano and Heringa

during tree-dependent refinement by dividing a given align-
ment in vertical blocks and aligning the associated profiles 
separately.

The T-Coffee program (29) can also handle both DNA and protein 
sequences. It includes a web server (following the default settings) as 
well as an option to download the program. The algorithm derives 
its sensitivity from combining both local and global alignment tech-
niques. Additionally, transitivity is exploited using triplet alignment 
information including each possible third sequence. A pairwise 
alignment is created using a protocol named matrix extension that 
includes the following steps:
 1. Combining local and global alignment. For each pairwise 

alignment, the match scores obtained from local and glo-
bal alignments are summed, where for every matched resi-
due pair the identity score of the associated (global or local) 
alignment is taken. For each sequence pair, the 10 highest 
scoring local alignments are compiled using Lalign (30) and 
a global alignment is calculated using ClustalW (31).

 2. Transitivity. For each third sequence C relative to a con-
sidered sequence pair A and B, the alignments A-C and 
C-B together constitute an alignment A-B. For each matched 
residue x in A and y in B, the minimum of the score of the 
match between residue x in A with residue z in C (alignment 
A-C) and that of residue z in C with y in B (alignment C-B) 
is taken; identity scores of associated alignments are taken 
as in the preceding step and all scores from the direct align-
ment as well as through all third sequences are summed.

 3. For each sequence pair, dynamic programming is performed 
over the thus extended matrices. Owing to the fact that the 
signal captured in the extended scores is generally more con-
sistent than noise, the scores are generally salient such that 
gap penalties can be set to zero.

  From the extended alignment scores a guide tree is calcu-
lated using the Neighbor-Joining technique, and sequences 
are progressively aligned following the dynamic program-
ming protocol. The combined use of local alignment, global 
alignment, and transitivity effectively alleviates error propaga-
tion during progressive alignment. However, the program is 
constrained by computational demands when aligning larger 
sets. As a consequence, the T-Coffee web server constrains the 
allowed number of input sequences to 50. T-Coffee permits 
the following further features:

 4. Integrating tertiary structures with 3D-Coffee. A variant of 
the described protocol, 3D-Coffee (32) allows the inclusion
of tertiary structures associated with one or more of the 
input sequences for guiding the alignment based upon the 
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principle that “Structure is more conserved than sequence.” 
If a partial sequence of a structure is given, the program will 
only take the corresponding structural fragment into account. 
The 3D-Coffee web server incorporates two default pairwise 
structural alignment methods: SAP (33) and FUGUE (34).
The first method is a structure superposition package, which 
is useful if more than one structure is included. The latter is 
a threading technique that can improve the multiple align-
ment process when local structural fragments are available. 
The advanced interface of the program allows the user to 
select alternative structural alignment methods.

 5. Accelerating the analyses. Speed limitations of the T-Coffee 
program can be partially reduced by running a less demand-
ing version. As an alternative, sequences can be divided into 
subgroups and aligned separately. To assist in this scenario, 
the program offers an option to compile a final alignment of 
these previously aligned subgroups.

 6. Consensus MSA. A recent extension is the method M-Coffee 
(35), which uses the T-Coffee protocol to combine the out-
puts of other MSA methods into a single consensus MSA.

The multiple sequence alignment package MAFFT (36, 37) is suited 
for DNA and protein sequences. MAFFT includes a script and a 
web server that both incorporate several alignment  strategies. An 
alternative solution is proposed for the construction of the guide 
tree, which usually requires most computing time in a progressive 
alignment routine. Instead of performing all-against-all pairwise 
alignments, Fast Fourier Transformation (FFT) is used to rapidly 
detect homologous segments. The amino acids are represented by 
volume and polarity values, yielding high FFT peaks in a pairwise 
comparison whenever homologous segments are identified. The 
segments thus identified are then merged into a final alignment by 
dynamic programming. Additional iterative refinement processes, 
in which the scoring system is quickly optimized at each cycle, 
yield high accuracy of the alignments.
 1. Fast alignment strategies. Two options are provided for large 

sequence sets: FFT-NS-1 and FFT-NS-2, both of which 
follow a strictly progressive protocol. FFT-NS-1 generates 
a quick and dirty guide tree and compiles a correspond-
ing MSA. If FFT-NS-2 is invoked, it takes the alignment 
obtained by FFT-NS-1 but now calculates a more reliable 
guide tree, which is used to compile another MSA.

 2. Iterative strategies. The user can choose from several itera-
tive approaches. The FFT-NS-i method attempts to further 
refine the alignment obtained by FFT-NS-2 by re-aligning 
subgroups until the maximum weighted sum of pairs (WSP) 
score (38) is reached. Two more recently included iterative 

3.4. MAFFT3.4. MAFFT
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refinement options (MAFFT version 5.66) incorporate local 
pairwise alignment information into the objective function 
(sum of the WSP scores). These are L-INS-i and E-INS-i, 
which use standard affine and generalized affine gap costs 
(39,40) for scoring the pairwise comparisons, respectively.

 3. Alignment extension. Another tool included in the MAFFT 
alignment package is mafftE. This option enhances the 
original dimension of the input set by including other 
homologous sequences, retrieved from the SwissProt data-
base with BLAST (12). Preferences for the exact number 
of additional sequences and the e-value can be specified by 
the user.

ProbCons (41) is a recently developed progressive alignment 
algorithm for protein sequences. The software can be downloaded 
but sequences can also be submitted to the ProbCons web server. 
The method follows the T-Coffee approach in spirit, but imple-
ments some of the steps differently. For example, the method 
uses an alternative scoring system for pairs of aligned sequences. 
The method starts by using a pair-HMM and expectation maxi-
mization (EM) to calculate a posterior probability for each pos-
sible residue match within a pairwise comparison. Next, for each 
pairwise sequence comparison, the alignment that maximizes the 
“expected accuracy” is determined (42). In a similar way to the 
T-Coffee algorithm, information of pairwise alignments is then 
extended by considering consistency with all possible third “inter-
mediate” sequences. For each pairwise sequence comparison, this 
leads to a so-called “probabilistic consistency” that is calculated 
for each aligned residue pair using matrix multiplication. These 
changed probabilities for matching residue pairs are then used 
to determine the final pairwise alignment by dynamic program-
ming. Upon construction of a guide tree, a progressive protocol 
is followed to build the final alignment.

ProbCons allows a few variations of the protocol that the 
user can decide to adopt:
 1. Consistency replication. The program allows the user to 

repeat the probabilistic consistency transformation step, by 
recalculating all posterior probability matrices. The default 
setting includes two replications, which can be increased to 
a maximum of 5.

 2. Iterative refinement. The program also includes an additional 
iterative refinement procedure for further improving align-
ment accuracy. This is based on repeated random subdivision 
of the alignment in two blocks of sequences and realignment 
of the associated profiles. The default number of replications 
is set to 100, but can be changed from 0 to 1000 iterations 
(for the web server one can select 0, 100, or 500).

3.5. ProbCons3.5. ProbCons
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 3. Pre-training. Parameters for the pair-HMM are estimated 
using unsupervised expectation maximization (EM). Emis-
sion probabilities, which reflect substitution scores from the 
BLOSUM-62 matrix (5), are fixed, whereas gap penalties 
(transition probabilities) can be trained on the whole set of 
sequences. The user can specify the number of rounds of 
EM to be applied on the set of sequences being aligned. 
The default number of iterations should be followed, unless 
there is a clear need to optimize gap penalties when consid-
ering a particular dataset.

The SPEM-protocol (43), designed for protein MSA, is a recent 
arrival in the field. Both a SPEM server and downloadable soft-
ware are available. Two online SPEM protocols are available: 
SPEM (normal) and SPEM-3D. Each follows a standard routine 
so that the user cannot change many options. The 3D-variant 
SPEM-3D, which allows the inclusion of information from ter-
tiary structure, can only be used through the Web. The SPEM 
approach focuses on the construction of proper pairwise alignments,
which constitute the input for the progressive algorithm. To 
optimize pairwise alignment, the method follows the PRALINE 
approach (see the preceding) in that it combines information 
coming from sequence pre-profiles (constructed a priori with 
homology searches performed by PSI-BLAST) (21), and knowl-
edge about predicted and known secondary structures. However, 
the latter knowledge is exploited in the dynamic programming 
algorithm by applying secondary structure dependent gap pen-
alty values, whereas PRALINE in addition uses secondary 
structure-specific residue exchange matrices. The pairwise align-
ments are further refined by a consistency-based scoring function 
that is modelled after the T-Coffee scenario (see the preceding)
based on integrating information coming from comparisons with 
all possible third sequences.

Next, a guide tree is calculated based on sequence identities 
and followed to determine the progressive multiple alignment 
path, leading to a final MSA based on the refined pairwise align-
ments. The web servers for SPEM and SPEM-3D can handle 
up to 200 sequences, whereas for the 3D version maximally 100 
additional structures can be included.

 1. Distant sequences: Although high throughput alignment 
techniques are now able to make very accurate MSAs, align-
ment incompatibilities can arise under divergent evolution. 
In practice, it has been shown that the accuracy of all 
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alignment methods decreases dramatically whenever a con-
sidered sequence shares <30% sequence identity (44). Given 
this limitation, it is advisable to compile a number of MSAs 
using different amino acid substitution matrices. Among 
these, the PAM (4) and BLOSUM (5) series of substitution 
matrices are the most widely used (especially BLOSUM62). 
It is helpful to know that higher PAM numbers and low 
BLOSUM numbers (e.g., PAM250 or BLOSUM45) corre-
spond to exchange matrices that have been designed for the 
alignment of increasingly divergent sequences, respectively, 
whereas matrices with lower PAM and higher BLOSUM 
numbers are suitable for more closely related sequence sets. 
Furthermore, it is crucial to attempt different gap penalty 
values, as these can greatly affect the alignment quality. Gap 
penalties are an essential part of protein sequence alignment 
when using dynamic programming. The higher the gap pen-
alties, the stricter the insertion of gaps into the alignment 
and consequently the fewer gaps inserted. Gap regions in an 
MSA often correspond to loop regions in the associated ter-
tiary structures, which are preferentially altered by divergent 
evolution. Therefore, it can be useful to lower the gap pen-
alty values for more divergent sequence sets, although care 
should be taken not to deviate too much from the recom-
mended settings. Excessive gap penalty values will enforce 
a gap-less alignment, whereas low gap penalties will lead 
to alignments with very many gaps, allowing (near) identi-
cal amino acids to be matched. In both cases the resulting 
alignment will be biologically inaccurate. The way in which 
gap penalties affect the alignment also depends on the resi-
due exchange matrix used. Although recommended com-
binations of exchange matrices and gap penalties have been 
described in the literature and most methods include default 
matrices and gap penalty settings, there is no formal theory 
yet as to how gap penalties should be chosen given a particu-
lar residue exchange matrix. Therefore, gap penalties are set 
empirically: for example, penalties of 11 and 1 are recom-
mended for BLOSUM62, whereas the suggested values for 
PAM250 are 10 and 1.

 2. Multi-domain proteins (Dialign, T-Coffee): Multi-domain 
proteins can be a particular challenge for multiple alignment 
methods. Whenever there has been an evolutionary change in 
the domain order of the query protein sequences, or if some 
domains have been inserted or deleted across the sequences, 
this leads to serious problems for global alignment engines. 
Global methods are not able to deal with permuted domain 
orders and normally exploit gap penalty regimes that make 
it difficult to insert long gaps corresponding to the length 
of one or more protein domains. For the alignment of 
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multi-domain protein sequences, it is advisable to resort 
to a local multiple alignment method. Alternatively, the T-
Coffee (29) and Dialign (46, 47) methods might provide a 
meaningful alignment of multi-domain proteins, as they are 
(partly) based on the local alignment technique.

 3. Repeats : The occurrence of repeats in many sequences can 
seriously compromise the accuracy of MSA methods, mostly 
because the techniques are not able to deal with different 
repeat copy numbers. Recently, an MSA strategy has become 
available that keeps track of various repeat types (45). The 
method requires the specification of the individual repeats, 
which can be obtained by running one of the available repeat 
detection algorithms, after which a repeat-aware MSA is 
produced. Although the alignment result can be markedly 
improved by this method, it is sensitive to the accuracy of 
the repeats information provided.

 4. TM regions: A special class of proteins is comprised of mem-
brane-associated proteins. The regions within such proteins 
that are inserted in the cell membrane display a profoundly 
changed hydrophobicity pattern as compared with solu-
ble proteins. Because the scoring schemes (e.g., PAM (4)
or BLOSUM (5)) normally used in MSA techniques are 
derived using sequences of soluble proteins, the alignment 
methods are in principle not suitable to align membrane-
bound protein regions. This means that great care should be 
taken when using general MSA methods. Fortunately, trans-
membrane (TM) regions can be reliably recognized using 
state-of-the-art prediction techniques such as TMHMM or 
Phobius (48, ref). Therefore, it can be advisable to mark the 
putative TM regions across the query sequences, and if their 
mutual correspondence would be clear, to align the blocks 
of intervening sequence fragments separately.

 5. Preconceived knowledge: In many cases, there is already some 
preconceived knowledge about the final alignment. For 
instance, consider a protein family containing a disulfide 
bridge between two specific cysteine residues. Given the 
structural importance of a disulfide bond, constituent Cys 
residues are generally conserved, so that it is important that 
the final MSA matches such Cys residues correctly. How-
ever, depending on conservation patterns and overall evo-
lutionary distances of the sequences, it can well happen that 
the alignment engine needs special guidance for matching 
the Cys residues correctly. Currently none of the approaches 
has a built-in tool to mark particular positions and assign 
specific parameters for their consistency, although the library 
structure of the T-Coffee method allows the specification 
of weights for matching individual amino acids across the 
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input sequences. However, exploiting this possibility can be 
rather cumbersome. The following suggestions are therefore 
offered for (partially) resolving this type of problem:
a. Chopping alignments. Instead of aligning whole sequences, 

one can decide to chop the alignment in different parts. 
For example, this could be done if the sequences have 
some known domains for which the sequence boundaries 
are known. An added advantage in such cases is that no 
undesirable overlaps will occur between these pre-marked 
regions if aligned separately. Finally, the whole alignment 
can be built by concatenating the aligned blocks. It should 
be stressed that each of the separate alignment operations 
is likely to follow a different evolutionary scenario, as for 
example the guide tree or the additionally homologous 
background sequences in the PSI-PRALINE protocol 
can well be different in each case. It is entirely possible, 
however, that these different scenarios reflect true evolu-
tionary differences, such as for instance unequal rates of 
evolution of the constituent domains.

b. Altering amino acid exchange weights. Multiple alignment 
programs make use of amino acid substitution matrices in 
order to score alignments. Therefore, it is possible to change 
individual amino acid exchange values in a substitution 
matrix. Referring to the disulfide example mentioned in the 
preceding, one could decide to up-weight the substitution 
score for a cysteine self-conservation. As a result, the align-
ment will obtain a higher score when cysteines are matched, 
and as a consequence the method will attempt to create an 
alignment where this is the case. However, some protein 
families have a number of known pairs of Cys residues that 
form disulfide bonds, where mixing up of the Cys residues 
involved in different disulfide bridges might happen in that 
Cys residues involved in different disulfide bonds become 
aligned at a given single position. To avoid such incorrect 
matches in the alignment, some programs (e.g., PRALINE) 
allow the addition of a few extra amino acid designators in 
the amino acid exchange matrix that can be used to identify 
Cys residue pairs in a given bond (e.g., J, O, or U). The 
exchange scores involving these “alternative” Cys residues 
should be identical to those for the original Cys, except for 
the cross-scores between the alternative letters for Cys that 
should be given low (or extreme negative) values to avoid 
cross alignment. It must be stressed that such alterations are 
heuristics that can violate the evolutionary model underly-
ing a given residue exchange matrix.

 6. Alignment editors : A number of multiple alignment editors 
are available for editing automatically generated alignments, 
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which often can be improved manually. Posterior manual 
adjustments can be helpful, especially if structural or func-
tional knowledge of the sequence set is at hand. The follow-
ing editing tools are available:
a. Jalview (www.jalview.org) (50) is a protein multiple sequence 

alignment editor written in Java. In addition to a number 
of editing options, it also provides a wide scale of sequence 
analysis tools, such as sequence conservation, UPGMA, 
and NJ (51) tree calculation, and removal of redundant 
sequences. Color schemes can also be customized according 
to amino acid physicochemical properties, similarity to con-
sensus sequence, hydrophobicity, or secondary structure.

b. SeaView (http://pbil.univ-lyon1.fr/software/seaview.html) 
(52) is a graphical editor suited for Mac, Windows, Unix, and 
Linux. The program includes a dot-plot routine for pairwise 
sequence comparison (53) or the ClustalW (31) multiple 
alignment program to locally improve the alignment and can 
also perform phylogenetic analyses. Again, color schemes can 
be customized.

c. STRAP (http://www.charite.de/bioinf/strap/) (54) is an
interactively extendable and scriptable editor program, 
able to manipulate large protein alignments. The software is 
written in Java and is compatible with all operating systems. 
Among the many extra features provided are: enhanced 
alignment of low-similarity sequences by integrating 
3D-structure information, determination of regular expres-
sion motifs, and transmembrane and secondary structure 
predictions.

d. CINEMA (http://umber.sbs.man.ac.uk/dbbrowser/
CINEMA2.1/) (55) is a Java interactive tool for editing 
either nucleotide or amino acid sequences. The flexible 
editor permits color scheme changes and motif selection.
Hydrophobicity patterns can also be viewed. Furthermore, 
there is an option to load prepared alignments from the 
PRINTS fingerprint database (56).

References

 1. Gribskov, M., McLachlan, A. D., Eisenberg, 
D. (1987) Profile analysis: detection of dis-
tantly related proteins. Proc Natl Acad Sci 
U S A 84, 4355–4358.

 2. Haussler, D., Krogh, A., Mian, I. S., 
et al. (1993) Protein modeling using hidden 
Markov models: analysis of globins, in Pro-
ceedings of the Hawaii International Con-
ference on System Sciences. Los Alamitos, 
CA: IEEE Computer Society Press.

 3. Bucher, P., Karplus, K., Moeri, N., et al. 
(1996) A flexible motif search technique 
based on generalized profiles. Comput
Chem 20, 3–23.

 4. Dayhoff, M. O., Schwart, R. M., Orcutt, 
B. C. (1978) A model of evolutionary 
change in proteins, in (Dayhoff, M., ed.), 
Atlas of Protein Sequence and Structure.
National Biomedical Research Founda-
tion, Washington, DC.



160 Pirovano and Heringa

 5. Henikoff, S., Henikoff, J. G. (1992) Amino
acid substitution matrices from protein 
blocks. Proc Natl Acad Sci U S A 89, 
10915–10919.

 6. Needleman, S. B., Wunsch, C. D. (1970) A 
general method applicable to the search for 
similarities in the amino acid sequence of 
two proteins. J Mol Biol 48, 443–453.

 7. Carillo, H., Lipman, D. J. (1988) The mul-
tiple sequence alignment problem in biol-
ogy. SIAM J Appl Math 48, 1073–1082.

 8. Stoye, J., Moulton, V., Dress, A. W. (1997) 
DCA: an efficient implementation of the 
divide-and-conquer approach to simultane-
ous multiple sequence alignment. Comput
Appl Biosci 13, 625–626.

 9. Feng, D. F., Doolittle, R. F. (1987) Pro-
gressive sequence alignment as a prerequi-
site to correct phylogenetic trees. J Mol Evol
25, 351–360.

 10. Hogeweg, P., Hesper, B. (1984) The align-
ment of sets of sequences and the construc-
tion of phyletic trees: an integrated method. 
J Mol Evol 20, 175–186.

 11. Gotoh, O. (1996) Significant improvement 
in accuracy of multiple protein sequence 
alignments by iterative refinement as 
assessed by reference to structural align-
ments. J Mol Biol 264, 823–838.

 12. Altschul, S. F., Gish, W., Miller, W., et al. 
(1990) Basic local alignment search tool. 
J Mol Biol 215, 403–410.

 13. Pearson, W. R. (1990) Rapid and sensi-
tive sequence comparison with FASTP and 
FASTA. Methods Enzymol 183, 63–98.

 14. Heringa, J., Taylor, W. R. (1997) Three-
dimensional domain duplication, swapping 
and stealing. Curr Opin Struct Biol 7, 
416–421.

 15. Smith, T. F., Waterman, M. S. (1981) 
Identification of common molecular subse-
quences. J Mol Biol 147, 195–197.

 16. Waterman, M. S., Eggert, M. (1987) A new 
algorithm for best subsequence alignments 
with application to tRNA-rRNA compari-
sons. J Mol Biol 197, 723–728.

 17. Thompson, J. D., Plewniak, F., Poch, O. 
(1999) BAliBASE: a benchmark alignment 
database for the evaluation of multiple 
alignment programs. Bioinformatics 15, 
87–88.

 18. Heringa, J. (1999) Two strategies for 
sequence comparison: profile-preprocessed 
and secondary structure-induced multiple 
alignment. Comput Chem 23, 341–364.

 19. Heringa, J. (2002) Local weighting schemes 
for protein multiple sequence alignment. 
Comput Chem 26, 459–477.

 20. Simossis, V. A., Heringa, J. (2005) PRALINE:
a multiple sequence alignment toolbox that 
integrates homology-extended and second-
ary structure information. Nucleic Acids 
Res 33, W289–294.

 21. Altschul, S. F., Madden, T. L., Schaffer, A. A.,
et al. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein data-
base search programs. Nucleic Acids Res 25, 
3389–3402.

 22. Kabsch, W., Sander, C. (1983) Dictionary 
of protein secondary structure: pattern rec-
ognition of hydrogen-bonded and geomet-
rical features. Biopolymers 22, 2577–2637.

 23. Jones, D. T. (1999) Protein secondary 
structure prediction based on position-
specific scoring matrices. J Mol Biol 292, 
195–202.

 24. Rost, B., Sander, C. (1993) Prediction of 
protein secondary structure at better than 
70% accuracy. J Mol Biol 232, 584–599.

 25. Lin, K., Simossis, V. A., Taylor, W. Ret al. 
(2005) A simple and fast secondary struc-
ture prediction method using hidden neu-
ral networks. Bioinformatics 21, 152–159.

 26. Edgar, R. C. (2004) MUSCLE: a multiple 
sequence alignment method with reduced 
time and space complexity. BMC Bioinfor-
matics 5, 113.

 27. Edgar, R. C. (2004) MUSCLE: multiple 
sequence alignment with high accuracy and 
high throughput. Nucleic Acids Res 32, 
1792–1797.

 28. Edgar, R. C. (2004) Local homology rec-
ognition and distance measures in linear 
time using compressed amino acid alpha-
bets. Nucleic Acids Res 32, 380–385.

 29. Notredame, C., Higgins, D. G., Heringa, 
J. (2000) T-Coffee: A novel method for fast 
and accurate multiple sequence alignment. 
J Mol Biol 302, 205–217.

 30. Huang, X., Miller, W. (1991) A time-effi-
cient, linear-space local similarity algorithm. 
Adv Appl Math 12, 337–357.

 31. Thompson, J. D., Higgins, D. G., Gibson, 
T. J. (1994) CLUSTAL W: improving the 
sensitivity of progressive multiple sequence 
alignment through sequence weighting, posi-
tion-specific gap penalties and weight matrix 
choice. Nucleic Acids Res 22, 4673–4680.

 32. O’Sullivan, O., Suhre, K., Abergel, C., et 
al. (2004) 3DCoffee: combining protein 
sequences and structures within multi-
ple sequence alignments. J Mol Biol 340, 
385–395.

 33. Taylor, W. R., Orengo, C. A. (1989) Pro-
tein structure alignment. J Mol Biol 208, 
1–22.



 Multiple Sequence Alignment 161

 34. Shi, J., Blundell, T. L., Mizuguchi, K. (2001) 
FUGUE: sequence-structure homology 
recognition using environment-specific 
substitution tables and structure-dependent 
gap penalties. J Mol Biol 310, 243–257.

 35. Wallace, I. M., O’Sullivan, O., Higgins, D. G., 
et al. (2006) M-Coffee: combining multiple
sequence alignment methods with T-Coffee.
Nucleic Acids Res 34, 1692–1699.

 36. Katoh, K., Misawa, K., Kuma, K., et al. (2002) 
MAFFT: a novel method for rapid multiple 
sequence alignment based on fast Fourier 
transform. Nucleic Acids Res 30, 3059–3066.

 37. Katoh, K., Kuma, K., Toh, H., et al. (2005) 
MAFFT version 5: improvement in accuracy 
of multiple sequence alignment. Nucleic
Acids Res 33, 511–518.

 38. Gotoh, O. (1995) A weighting system and 
algorithm for aligning many phylogeneti-
cally related sequences. Comput Appl Biosci
11, 543–551.

 39. Altschul, S. F. (1998) Generalized affine 
gap costs for protein sequence alignment. 
Proteins 32, 88–96.

 40. Zachariah, M. A., Crooks, G. E., Holbrook, 
S. R., et al. (2005) A generalized affine gap 
model significantly improves protein sequence 
alignment accuracy. Proteins 58, 329–338.

 41. Do, C. B., Mahabhashyam, M. S., Brudno, 
M., et al. (2005) ProbCons: Probabilistic 
consistency-based multiple sequence align-
ment. Genome Res 15, 330–340.

 42. Holmes, I., Durbin, R. (1998) Dynamic 
programming alignment accuracy. J Com-
put Biol 5, 493–504.

 43. Zhou, H., Zhou, Y. (2005) SPEM: improv-
ing multiple sequence alignment with 
sequence profiles and predicted secondary 
structures. Bioinformatics 21, 3615–3621.

 44. Rost, B. (1999) Twilight zone of protein 
sequence alignments. Protein Eng 12, 85–94.

 45. Sammeth, M., Heringa, J. (2006) Global 
multiple-sequence alignment with repeats. 
Prot Struct Funct Bioinf  64, 263–274.

 46. Morgenstern, B., Dress, A., Werner, T. 
(1996) Multiple DNA and protein sequence 
alignment based on segment-to-segment 
comparison. Proc Natl Acad Sci U S A 93, 
12098–12103.

 47. Morgenstern, B. (2004) DIALIGN: mul-
tiple DNA and protein sequence align-
ment at BiBiServ. Nucleic Acids Res 32, 
W33–36.

 48. Krogh, A., Larsson, B., von Heijne, G., 
et al. (2001) Predicting transmembrane 
protein topology with a hidden Markov 
model: application to complete genomes. 
J Mol Biol 305, 567–580.

 49. Kall, L., Krogh, A., Sonnhammer, E.L. 
(2004) A combined transmembrane topol-
ogy and signal peptide prediction method. 
J Mol Biol 338, 1027–1036.

 50. Clamp, M., Cuff, J., Searle, S. M., et al. 
(2004) The Jalview Java alignment editor. 
Bioinformatics 20, 426–427.

 51. Saitou, N., Nei, M. (1987) The neighbor-
joining method: a new method for recon-
structing phylogenetic trees. Mol Biol Evol
4, 406–425.

 52. Galtier, N., Gouy, M., Gautier, C. (1996) 
SEAVIEW and PHYLO_WIN: two 
graphic tools for sequence alignment and 
molecular phylogeny. Comput Appl Biosci
12, 543–548.

 53. Li, W.-H., Graur, D. (1991) Fundamentals
of Molecular Evolution. Sinauer, Sunder-
land, MA.

 54. Gille, C., Frommel, C. (2001) STRAP: edi-
tor for STRuctural Alignments of Proteins. 
Bioinformatics 17, 377–378.

 55. Parry-Smith, D. J., Payne, A. W., Michie, 
A. D., et al. (1998) CINEMA–a novel col-
our INteractive editor for multiple align-
ments. Gene 221, GC57–63.

 56. Attwood, T. K., Beck, M. E., Bleasby, A. J., 
et al. (1997) Novel developments with 
the PRINTS protein fingerprint database. 
Nucleic Acids Res 25, 212–217.



Chapter 8

Finding Genes in Genome Sequence

Alice Carolyn McHardy

Abstract

Gene-finding is concerned with the identification of stretches of DNA in a genomic sequence that encode 
biologically active products, such as proteins or functional non-coding RNAs. This is usually the first step in 
the analysis of any novel piece of genomic sequence, which makes it a very important issue, as all downstream 
analyses depend on the results. This chapter focuses on the biological basis, computational approaches, and 
corresponding programs that are available for the automated identification of protein-coding genes. For 
prokaryotic and eukaryotic genomes, as well as the novel, multi-species sequence data originating from 
environmental community studies, the state of the art in automated gene finding is described.

Key words: Gene prediction, genomic sequence, protein-coding sequences, prokaryotic, eukaryotic, 
environmental sequence samples.

The coding regions of a genome contain the instructions to build 
functional proteins. This fact gives rise to several characteristic 
features that can be used universally for their identification. First, 
if complementary DNA (cDNA), expressed sequence tags (EST), 
or protein sequences are already known for an organism, these 
can be used to determine the location of the corresponding genes 
in the genomic sequence. Although this seems fairly straightfor-
ward, the complex gene structure, along with the low sequence 
quality of EST reads, makes this a non-trivial task for eukaryotic
organisms. Second, natural selection for the encoded protein 
product to remain functional restricts the rate of mutation in 
coding sequences compared with non-functional genomic DNA. 
Thus, many protein-coding genes can be identified based on 
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statistically significant sequence similarities that they exhibit toward 
evolutionarily related proteins from other organisms. Selection is 
also evident in genome sequence comparisons between closely 
related species, in which stretches of more highly conserved 
sequence correspond to the functionally active regions in the 
genome. Here, protein-coding genes in particular can be iden-
tified by their characteristic 3-periodic pattern of conservation. 
Due to the degeneracy of the genetic code, the third codon posi-
tion is freer to change than the other positions without changing 
the encoded protein product. Approaches that use information 
about expressed sequences or sequence conservation are called 
“extrinsic,” as they require additional knowledge besides the 
genomic sequence of the organism being analyzed. Then, there 
is the “intrinsic” approach to gene identification, which is based 
on the evaluation of characteristic differences between coding 
and non-coding genomic sequence. In particular, there are char-
acteristic differences in the distribution of short DNA oligomers 
between the two. One biological reason for these differences is 
the influence of “translational selection” on the usage of synony-
mous codons and codon combinations in protein-coding genes. 
Synonymous codons that encode the same amino acid are not 
used with equal frequencies in coding sequences. Instead, there 
is a genome-wide preference in many organisms for the codons 
that are read by the more frequent tRNAs during the translation 
process. This effect is especially pronounced for highly expressed 
genes (1–4). There is also evidence that codon combinations 
that are prone to initiate frame shift errors during the translation 
process tend to be avoided (5). Another influence is evident in 
GC-rich genomes, in which the genome-wide tendencies toward 
high GC usage establish themselves in the form of a 3-periodic 
skew toward high GC-content in the generally more flexible third 
codon position (see Note 1). In the early 1990s, Fickett system-
atically evaluated the suitability of a large variety of intrinsic cod-
ing measures to discriminate between the coding and non-coding 
sequence that had by then been proposed, and found that simply 
counting DNA oligomers is the most effective (6).

Finding genes in genome sequences is a simpler problem for 
prokaryotes than it is for eukaryotic organisms. First, the prokaryo-
tic gene structure is less complex: A protein-coding gene corre-
sponds to a single Open Reading Frame (ORF) in the genome 
sequence, which begins with a start and ends with a stop codon. 

2. Methods2. Methods

2.1. Gene Finding 
in Prokaryotes
2.1. Gene Finding 
in Prokaryotes
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The translation start site is defined by a ribosome binding site that 
is typically located about 3–16 bp upstream of the start codon. 
Second, more than 90% of prokaryotic genome sequence is cod-
ing, as opposed to higher organisms, in which vast stretches of 
non-coding DNA exist.

For a prokaryotic gene-finding program, the task is to: (1)
discriminate between the coding and non-coding ORFs in the 
genome, as there are usually many more ORFs than protein-coding 
genes in the sequence; and (2) identify the correct start codon for 
those genes, as these can also appear internally in a gene sequence, 
or even upstream of the actual translation start site. The protein-
coding ORFs (ORFs that are transcribed and translated in vivo) are 
commonly referred to as coding sequences (CDSs).

Many programs make use of both extrinsic and intrinsic 
sources of information to predict protein-coding genes, as they 
complement each other nicely. External evidence of evolutionary
conservation provides strong evidence for the presence of a 
biologically active gene, but genes without (known) homologs 
cannot be detected this way. By contrast, intrinsic methods do 
not need external knowledge; however, an accurate model of 
oligonucleotide differences between coding and non-coding 
sequences is required.

A wide variety of techniques is used to solve the gene finding
problem (Table 8.1). These include probabilistic methods such 
as Hidden Markov Models (HMMs) (7–9) or Interpolated 
Context Models (10), and machine learning techniques for 
supervised or unsupervised classification, such as Support Vector 
Machines (SVMs) (11) and Self-Organizing Maps (SOMs) (12).
Most gene finders apply their classification models locally to indi-
vidual sequence fragments (using a sliding window approach) or 
ORFs in the sequence. In the “global” classification approach 
implemented with the HMM architecture of GeneMark.hmm, a 
maximum likelihood parse is derived for the complete genomic 
sequence, to either coding or non-coding states. An interesting 
property of this HMM technique is that the search for the optimal 
model and creation of the final prediction occur simultaneously. 
The final model that results from the optimization procedure in 
the training phase uses the hereby found maximum likelihood 
sequence parse, which is also the most likely assignment of genes 
to the sequence.

Another issue of importance to gene prediction relates to 
the fact that many prokaryotic genomes exhibit a consider-
able portion of sequence that is “atypical” in terms of sequence 
composition compared with other parts. This, in combination 
with other properties of such regions, usually indicates a foreign 
origin and acquisition of the respective region by lateral gene 
transfer (13). To enable the accurate detection of genes based 
on sequence composition in such regions, some gene-finding 
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programs provide a state for genes with atypical sequence prop-
erties within the HMM architecture, or by the use of techniques 
such as the SVM, classifiers can be created that are able to also 
optimally distinguish between “atypical” CDSs and non-coding 
ORFs based on the input features. With even more generalized 
approaches, the unsupervised discovery of characteristic CDS 
classes in the input data set initiates the gene-finding procedure 
(12, 14).

The following sequence of steps is often employed by a 
prokaryotic gene finder (Fig. 8.1):

Table 8.1.
Publicly available prokaryotic gene-finding software

Program Ia Eb Comments URL

BDGF (19) − + Classifies based on universal 
CDS-specific usage of 
short amino acid “seqlets”

http://cbcsrv.watson.ibm.com/
Tgi.html

Critica (20) + + http://www.ttaxus.com/index.
php?pagename=Software

EasyGene (8) + + Uses HMMs. Model training 
based on BLAST-derived 
“reliable” genes.

http://www.cbs.dtu.dk/
services/EasyGene

GeneMark.
hmm/S (7, 9)

+ − Uses HMMs http://Opal.biology.gatech.edu/
GeneMark

Gismo (11) + + Uses SVMs. Model training 
based on ‘reliable’ genes 
found with PFAM protein 
domain HMMs.

http://www.cebitec.uni-bielefeld.de/
groups/brf/software/gismo

See Fig. 8.2 for a schematic version 
of the program output.

Orpheus (21) + + http://pedant.gsf.de/orpheus

Reganor (22) + + Utilizes Glimmer and Critica http://www.cebitec.uni-bielefeld.de/
groups/brf/software/reganor/
cgi-bin/reganor_upload.cgi

Yacop (23) + + Utilizes Glimmer, 
Critica, and Orpheus

http://gobics.de/tech/yacop.php

ZCurve (24) + − Uses the “Z-transform” 
of DNA as information 
source for classification

http://tubic.tju.edu.cn/Zcurve_B

RescueNet (12) + + Unsupervised discovery of 
multiple gene classes using 
a SOM. No exact start/
stop prediction.

http://bioinf.nuigalway.ie/
RescueNet

aUses intrinsic evidence.
bUses extrinsic evidence.
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 1. In the initial phase, an intrinsic classifier for the discrimi-
nation between nORFs and CDSs is learnt. This is often 
initiated with similarity searches of the genomic sequences 
against protein or DNA sequence databases or a search for 
motifs of protein domains. The hereby generated informa-
tion can be used for a partial labeling of the sequence into 
nORF and CDSs and also to generate reliable training data 
for the classifier. ORFs supported by external sequence simi-
larities can be used as training material for the protein-coding 
genes, and ORFs that significantly overlap with such regions 
(that are located in their “shadow”) as training material for 
the non-coding ORF class.

 2. In the prediction phase, the classifier is applied to identify 
the protein-coding genes of the sequence.

 3. In the post-processing phase, start positions of predicted 
CDSs are relocated to the most likely translation start site 

Completely labeled sequence

Partially labeled sequence

Train classifier

Similarity searches / 
protein domain searches

Genome sequence Genome sequence

+1
+2
+3

-1
-2
-3

+1
+2
+3

-1
-2
-3

+1
+2
+3

-1
-2
-3

A. Train classifier B. Predict genes

Completely labeled sequence

C. Post-processing

Fig. 8.1. Overview of a sequence of steps employed by a prokaryotic gene finder. 
(A) The sequence is initially searched for regions that exhibit significant conservation 
on amino acid level relative to other protein-coding regions or show motifs of protein 
domains. By extension of such regions to a start and stop codon, a partial labeling of 
the genome sequence into coding regions (light gray) and non-coding ORFs, which 
significantly overlap with such coding sequences in another frame (dark gray), can 
be obtained. The labeled parts can be used as training sequences to derive vectors of 
intrinsic sequence features for the training of a binary classifier. (B) The classifier is 
applied to classify all ORFs above a certain length in the sequence as either CDS or 
nORF. In the post-processing phase C, start positions of the predicted CDSs are reas-
signed with the help of translation start site models, and conflicts between neighboring 
predictions are resolved.
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using translation start site models. Such models usually incor-
porate information about the ribosome binding site, and 
are applied to search for the start codon with the strongest 
upstream signal for any given gene. Programs that have been 
specifically designed for this task are also available (15–18). 
The above-mentioned HMM-based gene finders deviate 
from this procedure, as they incorporate the ribosome bind-
ing site signal directly into the HMM model, and identify 
the optimal start sites simultaneously with the overall optimal 
sequence parse. Conflicts of overlapping predictions that 
could not be solved by relocation of start sites are resolved 
by the removal of the “weaker” prediction, whereby this call 
can be based on intrinsic and also the extrinsic information 
generated in phase A.

Recently, the application of genome sequencing techniques to 
DNA samples obtained directly from microbial communities 
inhabiting a certain environment has spawned the novel field of 
environmental or community genomics, or metagenomics (25).
The field promises to deliver insights into numerous issues that 
cannot be addressed by the sequencing of individual, lab-cultivated 
organisms. By estimates, <1% of all microorganisms can be grown 
in pure culture with standard techniques. As a result of this, our 
current knowledge of prokaryote biology and also the sequenced 
genomes exhibits a strong bias toward four phyla, which contain 
many cultivable organisms, out of an estimated total of 53 or 
more existing prokaryotic phyla (26, 27 ). By bypassing the need 
for pure culture, environmental genomics allows the discovery of 
novel organisms and the analysis of sequences that could not have 
been obtained otherwise. These studies also increase understand-
ing of the processes and interactions that shape the metabolism, 
structure, function, and evolution of a microbial community seen 
as a whole.

The sequences of an environmental sample sometimes can 
represent a very large number of organisms, each of which is rep-
resented in proportion to its abundance in the habitat. Sufficient 
sequence is typically sampled to allow the reconstruction of nearly 
complete genomes for the most abundant organisms in a sample. 
In addition, numerous short fragments and unassembled singleton 
reads are generated from the many less abundant organisms. The 
new data type creates challenges at all levels for the bioinformatics 
tools that have been established in genome sequence analysis 
(28), including the available prokaryotic gene-finding programs. 
The short sequences that are created frequently contain trun-
cated and frame-shifted genes, which many of the standard gene 
finders have not been designed to identify. Recently, a program 
specifically designed for this application has become available that 
allows identification of the homology-supported genes, including 
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truncated and frame-shifted versions, with good specificity (29).
Second, the sequence properties of both coding and non-coding 
sequences can vary considerably between genomes (30), which 
might cause difficulties in creating an appropriate intrinsic model 
(see Note 2). A systematic comparison and evaluation of differ-
ent feasible approaches is still missing at this point, but proce-
dures employing a variable number of CDS models might fare 
best. Such models could be derived by the initial unsupervised 
discovery of distinct CDS classes (12, 14) in the data. Alterna-
tively, an amino-acid composition-based approach such as the 
Bio-Dictionary gene finder (BDGF) (19) might perform well. 
The BDGF identifies CDSs based on a universal model of amino 
acid composition (using short amino acid “seqlets”) and does not 
require the construction of organism-specific intrinsic models to 
find genes without homologs.

Compared with gene identification in prokaryotic organisms, in 
which automated prediction methods have reached high levels 
of accuracy (see Note 3), eukaryotic gene prediction is currently 
still a highly challenging problem for a number of reasons. First, 
only a small fraction of eukaryotic genome sequences correspond 
to protein-encoding exons, which are embedded in vast amounts 
of non-coding sequence. Second, the gene structure is complex. 
The Open Reading Frame encoding the final protein product can 
be located discontinuously in two or more sometimes very short 
exonic regions, which are separated from each other by intronic 
sequence. The junctions of exon-intron boundaries are character-
ized by splice sites on the initial transcript, which guide intron 
removal in fabrication of the ripe mRNA transcript at the spliceo-
some. Additional signal sequences, such as an adenylation signal, 
are found in the proximity of the transcript end and determine 
a cleavage site corresponding to the end of the ripe transcript 
to which a poly-A tail is added for stability. The issue is further 
complicated by the fact that genes can have alternative splice and 
polyadenylation sites, as well as alternative translation and tran-
scription initiation sites. Third, due to the massive sequencing 
requirements, additional eukaryotic genomes that can be used to 
study sequence conservation are becoming available more slowly 
than their prokaryotic counterparts.

The complex organization of eukaryotic genes makes deter-
mination of the correct gene structure the most difficult prob-
lem in eukaryotic gene prediction. Signals of functional sites are 
very informative; for instance, splice site signals are the best means 
to locate exon-intron boundaries. Methods that are designed to 
identify these or other functional signals from promoter or polya-
denylation (polyA) sites are generally referred to as “signal sen-
sors.” Methods that classify genomic sequence into coding or 
non-coding content are called “content sensors.” Content sensors 
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can utilize all of the above-mentioned sources of information for 
gene identification: extrinsic information such as EST/cDNA or 
protein sequences, comparisons to genomic sequences from other 
organisms, or intrinsic information about coding sequence-specific 
sequence properties. Extrinsic evidence, such as the sequences of 
known proteins and EST/cDNA libraries, tends to produce reli-
able predictions, but it is biased toward genes that are highly and 
ubiquitously expressed. The programs for “de novo” gene identifi-
cation are also categorized as intrinsic “one genome” approaches, 
and “dual” or “multi-genome” approaches, that utilize compara-
tive information from other genomes (31). Many gene finders use 
HMMs for the task of “decoding” the unknown gene structure 
from the sequence, which allows the combination of content and 
signal sensor modules into a single, coherent probabilistic model 
with biological meaning. Typically, these models include states for 
exons, introns, splice sites, polyadenylation signals, start codons, 
stop codons, and intergenic regions, as well as an additional model 
for single exon genes. See (31, 32) for recent reviews of the pro-
grams and techniques used in the field.

As Ensembl is a very widely used resource, a brief description 
of the Ensembl gene prediction pipeline (33) is included at this 
point. The Ensembl pipeline leans strongly toward producing a 
specific prediction with few false-positives rather than a sensitive 
prediction with few false-negatives. Every gene that is produced 
is supported by direct extrinsic evidence, such as experimental 
EST/cDNA data, known protein sequences from the organism’s 
proteome, or known proteins of related organisms. The complete 
procedure involves a wide variety of programs (Fig. 8.3). Repeti-
tive elements are initially identified and masked, to remove them 
from the analyzed input.
 1. The sequences of known proteins from the organism are 

mapped to a location on the genomic sequence. Local align-
ment programs are used for a prior reduction of the sequence 
search space, and the HMM-based GeneWise program (34)
for the final sequence alignment.

 2. An ab initio predictor, such as Genscan (35), is run, and for pre-
dictions confirmed by the presence of homologs, those homologs 
are aligned to the genome using GeneWise, as before.

 3. Simultaneously to Step 1, Exonerate (36) is used to align 
known cDNA sequences to the genome sequence.

 4. The candidates that were found with this procedure are 
merged to create consensus transcripts with 3′ UTRs, cod-
ing sequence and 5′ UTRs.

 5. Redundant transcripts are merged, and genes are identified, 
which by Ensembl’s definition correspond to sets of tran-
scripts with overlapping exons.

2.3.1. The Ensembl Gene 
Prediction Pipeline
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 6. Novel cDNA genes that do not match with any exons of the 
protein-coding genes identified so far are added to create the 
final gene set.

It is important to note that for the genomes of different organ-
isms, this procedure is applied with slight variations, depending 
on the available resources.

Traditionally, the models of eukaryotic de novo gene-finding 
programs are trained in a supervised manner, in order to learn the 
optimal, species-specific parameters for splice site, intron length, 
and content sensor models. Their complexity requires large and 
reliable training sets, which can best be derived by mapping EST 
or cDNA sequence information to the genome. In cases in which 
sufficient information is not available, models that have been 
created for other species can be used, although this can deliver 
suboptimal results. The programs SNAP (37) and Genemark.
hmm ES-3.0 (38) employ two different techniques to circum-
vent this problem, and allow high-quality gene prediction for 
genomes in which little reliable annotation is available. SNAP 
utilizes an iterative “bootstrap” procedure, in which the results 
initially derived by application of models from other organisms 
are used in an iterative manner for model training and prediction 
refinement. Genemark.hmm derives its model in a completely 

2.3.2. De Novo Prediction 
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Fig. 8.3. Overview of the Ensembl pipeline for eukaryotic gene prediction.
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unsupervised manner from the unannotated genomic sequence, 
starting with broadly set, generic model parameters, which are 
iteratively refined based on the prediction/training set obtained 
from the raw genomic sequence.

The increasing availability of high-coverage genomic sequence 
for groups of related eukaryotic organisms has resulted in significant
advances in de novo gene-finding accuracy. For compact eukaryo-
tic genomes, dual genome approaches achieve up to 67% accuracy 
in the de novo prediction of complete gene structures. Experimental 
follow-up experiments led to the biological verification of to up 
to 75% of the novel predictions selected for testing (39, 40). Per-
formance is still markedly lower for the mammalian genomes, 
however, due to their larger fractions of non-coding sequence 
and pseudogenes.

As long stretches of high-quality, experimentally verified 
genomic DNA are still scarce for eukaryotes, it is often impos-
sible to unequivocally decide whether novel predictions correspond 
to false-positives or are, in fact, real novel genes that are missing 
from the current annotations.

For the human genome, the ENCODE (ENCyclopedia of 
DNA Elements) project was launched in 2004, which ultimately 
aims to identify all functional elements in the human genome. 
In the current pilot phase, the goal is to produce an accurate, 
experimentally verified annotation for 30 megabases (1%) of 
the human genome, and delineate a high throughput strategy 
suitable for application to the complete genome sequence. As 
part of this effort, the EGASP (ENCODE Genome Annotation 
Assessment Project) 2005 was organized (41), which brought 
together more than 20 teams working on computational gene 
prediction. Evaluation of the different programs on the high-
quality annotation map showed, not surprisingly, that the extrinsic 
programs that utilize very similar information as the human 
annotators perform best. Of the de novo prediction programs, 
those including comparative genomic analyses came in second, 
and lastly, the programs predicting solely based on intrinsic 
genomic evidence. The comparison with existing annotation 
and the subsequent experimental evaluation of several hundred 
de novo predictions showed that only very few human genes are 
not detected by computational means, but that even for the best 
programs, the accuracy of exactly predicting the genomic struc-
ture was only about 50% (42). Of the experimentally validated 
de novo predictions, only few (3.2%) turned out to correspond 
to real, previously unknown exons. Another insight gained in 
this project was that alternative splicing seems to occur in most 
human genes, which marks one more tough challenge eukaryotic 
computational gene finders will have to face in order to create 
highly accurate, automated predictions.

2.3.3. Accuracy 
Assessment and Refining 
Annotation
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 1. The periodic skew toward high GC-content in the third 
codon position of coding sequences in GC-rich genomes can 
be visualized with “frame-plots,” in which the phase-specific 
GC content of the sequence (averaged over a sliding sequence 
window) is visualized in three different curves (Fig. 8.4). Such 
plots are commonly used by annotators for start site annota-
tion and are part of many genome annotation packages.

 2. Currently, genes in metagenome samples in some cases are 
identified based on sequence similarities only, which leaves 
genes that do not exhibit similarities to known genes (or to 
other genes found in the sample) undiscovered. An alternative 
procedure is to create a universal intrinsic model of prokaryotic 
sequence composition from known genomic sequences. This 
prevents a bias of the model toward the dominating organisms 
of a metagenome community, but will still be biased toward 
phyla that have been characterized so far.

 3. The number of completely sequenced prokaryotic organisms 
has grown exponentially within the last 5 years. The exist-
ence of such a large and diverse data set allows a thorough 
assessment of gene-finding accuracy across the wide variety 
of sequenced organisms. For several programs, evaluations on 
more than 100 genomes sequences have been undertaken. 
Prediction of CDSs for prokaryotic genomes generally has 
become very accurate. The gene finder Reganor (22), which 
incorporates evidence from the programs Glimmer and 

3. Notes3. Notes

Fig. 8.4. The location of genes in GC-rich genomes is indicated by the frame-specific GC content. A plot of the frame-
specific GC content was computed for a sliding window of size 26 bps that was moved with a step size of 5 across the 
sequence. The GC content is plotted in the lower panel for the three frames: frame 3, frame 2, and frame 1. The upper 
panel shows the location of annotated protein-coding genes in the genome (arrows).
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Critica, reproduces bacterial annotations with 95% specificity, 
and 98% sensitivity in identification of “certain” genes that are 
supported by external evidence. The SVM-based gene finder 
GISMO (11) and the HMM-based EasyGene (43) reach sen-
sitivity levels of up to 99%, while also displaying high levels of 
specificity. Automated gene prediction has become so accurate 
that a considerable fraction of the additional “false-positive” 
predictions according to the manually compiled annotations 
in fact seem to represent real, but not annotated genes (44)
(see Note 4). Programs for start site identification, such as 
TICO (17) and GS-Finder (15), have also been found to 
perform with >90% accuracy. However, due to the currently 
limited numbers of CDSs with experimentally verified N-termini 
it is too early to generalize this observation. A challenge that 
remains to be addressed by prokaryotic gene finders is the 
correct identification of “short” genes with fewer than 100 
codons. Evidence indicates that the automatic identification 
as well as the current annotation for such short genes need to 
be improved (22, 43, 45).

 4. Annotations are not perfect, and not supported by experi-
mental evidence in every case, so accuracy estimates obtained 
with this standard of truth can be questionable. Accordingly, 
claims that additional predictions might in fact correspond to 
real, but currently missing genes, could be correct, just as pos-
sibly genes that were predicted in accordance to the annotation 
might be false-positive in both cases. Thus, accuracy estimates 
should generally be based on further evidence that supports or 
refutes the predictions. A strong indicator of a valid prediction 
for instance is its location in a cluster of genes with homologs 
in a similar arrangement in related genomes (46).

The author thanks Lutz Krause, Alan Grossfield, and Augustine 
Tsai for their comments.
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Chapter 9

Bioinformatics Detection of Alternative Splicing

Namshin Kim and Christopher Lee

Abstract

In recent years, genome-wide detection of alternative splicing based on Expressed Sequence Tag (EST) 
sequence alignments with mRNA and genomic sequences has dramatically expanded our understanding 
of the role of alternative splicing in functional regulation. This chapter reviews the data, methodology, 
and technical challenges of these genome-wide analyses of alternative splicing, and briefly surveys some 
of the uses to which such alternative splicing databases have been put. For example, with proper alterna-
tive splicing database schema design, it is possible to query genome-wide for alternative splicing patterns 
that are specific to particular tissues, disease states (e.g., cancer), gender, or developmental stages. EST 
alignments can be used to estimate exon inclusion or exclusion level of alternatively spliced exons and 
evolutionary changes for various species can be inferred from exon inclusion level. Such databases can 
also help automate design of probes for RT-PCR and microarrays, enabling high throughput experimental
measurement of alternative splicing.

Key words: alternative splicing, genome annotation, alternative donor, alternative acceptor, exon 
skipping, intron retention, tissue-specific, cancer-specific, exon inclusion, exon exclusion, RT-PCR, 
microarray.

One area in which genomics and bioinformatics have made a dra-
matic impact is the field of alternative splicing. Since its discovery in 
1978 (1), alternative splicing was widely considered to be a rela-
tively uncommon form of regulation affecting perhaps 5–15% of 
genes. Recently, thanks to the vast amounts of public data pro-
duced by EST, cDNA, and genome sequencing projects, and fast 
alignment tools, genome-wide studies on alternative splicing have 
become feasible. Surprisingly, genome-wide studies on alternative 
splicing have consistently demonstrated that 40–70% of human 
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genes are alternatively spliced (2–24). Now the major challenge 
is to make sense of the functional impact of this huge new catalog 
of alternative splicing, by making these data easy for biologists to 
incorporate into their research. This effort has several components. 
Alternative splicing plays an important role in increasing protein 
diversity and function. Many splice variants with missing domains 
or motifs can be related to various diseases; therefore, alternatively 
spliced genes can be therapeutic targets for drug development 
(25–27). This chapter reviews the data, methodology, and technical 
challenges of these genome-wide analyses of alternative splicing, 
and briefly surveys some of the major applications that such alter-
native splicing databases have been designed to address.

First, it is important to understand the diverse types of alterna-
tive transcript variation, since these frame the technical chal-
lenges that must be considered. Alternative splicing patterns can 
be classified into alternative donor site (alternative 5′ splicing), 
alternative acceptor site (alternative 3′ splicing), exon skipping, 
alternative initiation site, alternative polyadenylation, and intron 
retention (Fig. 9.1). Technically, alternative initiation and alter-
native polyadenylation are due not to alternative splicing per se, 
but instead to usage of a different transcriptional start site (alter-
native initiation) or of a different polyadenylation site. This has 
immediate technical implications. In general, alternative splicing 
patterns such as alternative donor, alternative acceptor, and exon 
skipping sites are easier to detect and interpret, because of the 
extra technical challenges of assigning confidence to the other 
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Fig. 9.1. Types of alternative transcripts. Gray and black boxes represent alternative exons. White boxes represent 
constitutive exons.
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events, as examined in detail in the following. Intron retention is 
generally the most problematic type, because it is hard to distin-
guish from experimental artefacts (see Note 1).

All attempts to identify alternative splicing start by comparing EST 
sequences with mRNA and genomic sequences (4, 6, 8–15, 17, 18, 
20–24, 28–42). First, the detection method should report all dif-
ferences between transcript fragments that could be real alternative 
transcript variation, while excluding the many types of artefacts that 
are possible (see Table 9.1; Notes 1 and 2). For example, one could 
focus on pairs of observed splices that share one splice site but differ 
at the other splice site (see Fig. 9.1). This simple but highly spe-
cific pattern detects most possible AS events; by contrast, genomic 
contamination and other artefacts do not produce this pattern. In 
addition to the transcript sequences themselves, genomic sequence 
also plays a critical role. First, it provides the essential foundation for 
detecting and validating splicing events in the transcript fragments. 
Since much of the information for splice sites is intronic, the genomic 
sequence is vital for checking candidate splices (which should cor-
respond to introns). For this reason, comparing only the mRNA and 
EST sequences (20, 31, 35, 36, 41) yields more limited predictive 
power, because it does not utilize information in the intronic part of 
the genome. mRNA splicing is a carefully controlled process. Since 
more than 95% of intron sequences match the GT…AG consensus 
of U1/U2 splice sites, even simple genomic sequence checks can be 
broadly useful. Now that many genome assemblies are available in 
public, it is possible to exploit the information hidden in the intronic 
part of the genome. Second, genomic sequence provides the best 
foundation for determining which EST fragments are “from the 
same gene” (i.e., EST clustering), and distinguishing ESTs from 
similar genes (paralogs), which otherwise could cause incorrect pre-
dictions of alternative splicing. Thanks to the development of fast 
sequence alignment tools such as BLAT (43) and GMAP (44), it 
is feasible to map all mRNA and EST sequences against genome 
assembly within a few days, even using a single CPU.

It is important to understand the available public resources for 
transcript sequencing data. EST sequences are small pieces of 
DNA sequences, usually 200–500 bp, generated by shotgun 
sequencing of one or both strands of an expressed gene. EST 
sequencing can be produced rapidly and inexpensively, and has 
been the primary source of raw data for discovering new forms of 
transcript diversity. To date, nearly 36 million EST sequences have 
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been deposited in the public dbEST database (45). Furthermore, 
since EST sequences have linked information about their source 
sample (commonly including tissue, cancer, gender, and devel-
opmental stage as well as organism information), many efforts 
have been made to discover biologically important patterns from 
those data.

Since ESTs are short fragments of mRNA transcripts, it has 
also been necessary to sequence full-length cDNAs each rep-
resenting a single sub-cloned mRNA. In theory, if only one 
transcript for a given gene existed, fragment assembly methods 
could easily predict that full-length isoform from EST fragments. 
However, in the presence of alternative splicing, the assembly 
problem becomes much more challenging and in fact has no 
guaranteed solution; bioinformatics can only provide predic-
tions. Thus there is no true substitute for experimental sequenc-
ing of full-length cDNA sequences. A number of programs 
and databases can provide predicted transcript sequences, e.g., 
RefSeq (46–50), GenScan (51), Twinscan (52), ECgene (14, 15),
Fgenesh++ (53), GenomeScan (54), and others. However, gene 
prediction methods have suboptimal false-positive rates and (just 
as importantly) false-negative rates for prediction of alternatively 
spliced transcripts, so existing alternative splicing databases gen-
erally do not use such predicted sequences.

It is worth noting that there are relatively little data availa-
ble concerning alternatively spliced protein products. The Swiss-
Prot database (55) includes alternative splicing information for a 
small fraction of its protein records, 14,158 out of 217,551 (Uni-
ProtKB/Swiss-Prot Release 49.6 of 02-May-2006), via the VAR-
SPLIC feature annotation (56). Often it is unclear whether the 
SwissProt alternative splicing information is based on direct experi-
mental identification of the protein isoform (i.e., direct detection 
of the precise protein form, as opposed to inferring the existence 
of this form from mRNA sequence). It has long been hoped that 
mass spectrometry would yield large-scale identification of alterna-
tive protein isoforms, but this has not yet happened.

Another important class of data is EST clustering (13–15,
57–68). The main uncertainty about any EST is what gene it is 
from, and the initial focus of EST research was on finding novel 
genes. Based on similarity and genomic location, EST sequences 
are grouped into clusters to identify those that originated from 
the same gene. For reasons of space, EST clustering is not covered 
in detail in this chapter. In general, EST databases include clus-
tering information. Among the major EST databases (UniGene 
(57, 67, 68), TIGR Gene Indices (61, 62, 64–66), STACKdb (60,
63), and ECgene (13–15)), TIGR and ECgene provide transcript 
assembly but UniGene does not. UniGene clusters for human 
have the fastest update cycle and are updated every 2–3 months. 
Other databases have about a 1-year update cycle. The faster EST 
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data increase, the shorter the average update cycle. For examples 
of alternative splicing detection, this chapter refers to UniGene 
as a primary database.

There are nearly 36 million EST sequences available from dbEST, 
of which the largest individual component is human (7.7 million
EST sequences). After human, mouse is the next largest (4.7 
million EST sequences), followed by rice, cattle, and frog (each 
more than 1 million EST sequences). It is worth emphasizing 
that the main limitation on alternative transcript discovery is the 
amount of EST and mRNA sequence coverage, both across all 
regions of a given gene and across all tissues and developmental/
activation states in which that gene is expressed. Even for human 
EST data, there are relatively few genes with high levels of EST 
coverage (e.g., 10× coverage) in each one of the individual tissues 
in which the gene is expressed. Thus it is likely that even human 
and mouse alternative splicing databases are far from complete. 
However, it is unclear that EST sequencing is an efficient method 
for obtaining a complete picture of alternative splicing across 
diverse tissues. Microarray approaches appear likely to take over 
this role in the future. For other organisms, the data are even 
more incomplete. Their alternative splicing data probably only 
scratch the surface, and thus represent a new frontier for alterna-
tive splicing discovery.

It is more difficult to obtain full-length cDNA sequences, 
and in general it appears that many genes lack full-length mRNA 
sequences. For example, of the 95,887 total UniGene clusters 
for human (Release #190), 69,242 clusters do not have a single 
mRNA sequence. (It should be emphasized that many of these 
clusters may represent microRNAs or other transcription units of 
unknown function.) To increase the number of mRNA sequences, 
several HTC sequencing projects have been launched (69–74).
GenBank (75–80) has established an HTC division for such data, 
and these HTC sequences will be moved to the appropriate taxo-
nomic division after annotation.

Another essential category of public data is genomic 
sequence. In April 2003, the Human Genome Project announced 
the completion of the DNA reference sequence of Homo sapiens
(81–85). The latest human genome assembly version was 
released recently, NCBI build 36.1 (UCSC hg18). For analyses 
of other organisms, it is important to distinguish different stages 
of genome assembly sequences. In the draft stage, the assem-
bly consists of small contigs not assembled into chromosomes. 
Some mammalian genome assemblies are released as these small 
contigs (termed as “scaffold” sequences). In a final stage, these 
contigs will be assembled further to make chromosome sequences. 
There are 41 published complete eukaryotic genomes and 607 
eukaryotic ongoing genome projects as of today (86–88). Major 

2.2. Completeness 
and Updating 
of Public Data

2.2. Completeness 
and Updating 
of Public Data



186 Kim and Lee

genome assemblies are available at NCBI (89) (http://www.ncbi.
nlm.nih.gov/), UCSC Genome Bioinformatics (90–92) (http://
genome.ucsc.edu/), and Ensembl (93–101) (http://www.ensembl.
org/).

The UniGene database is available at NCBI. UniGene distributes 
clusters for almost 70 species, and the number of species is still 
growing. With each new release, the older versions are no longer 
kept and comparing results between versions can be challenging. 
Thus, it is best to use the latest version. Each UniGene database 
contains files with the following extensions: “.info” for statistics, 
“.data.gz” for cluster results and annotation, “.lib.info.gz” for EST 
library information, “.seq.all.gz” for all sequences, “.seq.uniq.gz” 
for representative sequences for each cluster, and “.retired.lst.gz” for 
retired sequences information of the previous version.

Genome assembly sequences are available at NCBI, UCSC Genome
Bioinformatics, and Ensembl. These three genome centers use 
different assembly names based on their own methods. UCSC 
Genome Bioinformatics reports another chromosome named 
“random.” These “random” chromosomes files contain clones 
that are not yet finished or cannot be placed with certainty at a 
specific place on the chromosome or haplotypes that differ from 
the main assembly. In general, two archives are distributed: soft- 
and hard-masked. Repeat sequences are represented in lower 
case in soft-masked flat files and by Ns in hard-masked flat files. 
Usually, if you are working with nucleotides, soft-masked fasta 
sequences are recommended and hard-masked fasta sequences 
for research related to proteins.

One of the best ways to study orthologous genes is to use multiple 
alignments of genome assemblies. UCSC Genome Bioinformatics 
distributes multiple alignments as MAF (multiple alignment 
formats) files (102). Currently, 17way MAF is available at UCSC 
Genome Bioinformatics; that is, multiple alignments of 17 genome 
assemblies.

The best way to store all data files is to use a relational database, 
such as MySQL. Most genome browsers use MySQL database 
to retrieve data. Data files are often distributed as MySQL-ready 
format. Database schemas should be carefully designed to avoid 
inefficient queries.

This section briefly summarizes the availability of the software 
described in the Methods section. BLAST (103–108) is a database 
search engine for sequence similarities and is available at NCBI, 
including pre-compiled binaries or source package (NCBI Toolkit). 
BLAT (43) is a sequence alignment tool using a hashing and index-
ing algorithm and is available from the web site of Jim Kent (http://
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2.2.1. Downloading NCBI, 
UniGene Database

2.2.2. Downloading 
Genome Assemblies
2.2.2. Downloading 
Genome Assemblies

2.2.3. Downloading 
Multiple Alignments
2.2.3. Downloading 
Multiple Alignments

2.2.4. Parsing and 
Uploading into Relational 
Databases

2.2.4. Parsing and 
Uploading into Relational 
Databases

2.3. Downloading 
and Compiling 
Bioinformatics Tools

2.3. Downloading 
and Compiling 
Bioinformatics Tools



 Detection of Alternative Splicing 187

www.soe.ucsc.edu/~kent/). Most of the alignments shown in the 
UCSC genome browser are generated by BLAT. SPA (109) uses 
a probabilistic algorithm for spliced alignment. It was developed 
using the BLAT library and is available at http://www.biozentrum.
unibas.ch/personal/nimwegen/cgi-bin/spa.cgi. SPA considers a 
consensus of GT…AG splice site. GMAP (44) is a recently devel-
oped fastest sequence alignment tool and is available at http://www.
gene.com/share/gmap. GMAP considers a consensus of GT…AG 
splice sites. SIM4 (110) is based on dynamic programming and 
is available at http://globin.cse.psu.edu/html/docs/sim4.html. 
SIM4 considers a consensus of GT…AG splice sites. Calculation 
speed for BLAST and SIM4 is somewhat slow. In order to align all 
mRNA and EST sequences against a genome, SPA or GMAP would 
be primary choices because calculation speed is fast and splice site 
consensus is well detected. RepeatMasker is a program that screens 
DNA sequences for interspersed repeats and low complexity DNA 
sequences (111). RepeatMasker is available at http://www.repeat-
masker.org and additional packages such as Cross_Match (112),
WUBlast (113) and Repbase (114, 115) are needed. CLUSTALW 
(116, 117) is a multiple alignment tool and is available at http://
www.ebi.ac.uk/clustalw/.

EMBOSS (118, 119) is a free open source analysis package 
specially developed for the needs of the molecular biology com-
munity. EMBOSS is available at http://emboss.sourceforge.net. 
Most of the data files are distributed as flat files, that is, simple text 
files. There are several modules for parsing flat files. For example, 
biopython is a collection of python modules for computational 
molecular biology and available at http://www.bio python.org 
(120, 121).

Alternative splicing detection methods can be broken down into 
three distinct stages. First, transcript and genomic sequence 
data are pre-processed to eliminate possible problems. Second, 
transcript sequences are aligned to each other and to genomic 
sequence to obtain experimental “gene models.” Third, alter-
native splicing and other transcript variation is detected and 
analyzed from these alignments. This section considers each of 
these phases separately.

Unfortunately, EST data contain a wide variety of experimental 
artefacts that can lead to incorrect prediction of alternative splic-
ing (Table 9.1). Note 2 discusses these artefacts at length. To 
reduce the number of such artefacts, several types of pre-process-
ing are commonly performed. First, repetitive sequences must 
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be masked to prevent artefactual alignment of sequences from 
different genes. Since repeat sequences are ubiquitous in mamma-
lian genomes, and can also occur in EST and mRNA sequences, 
they should be masked using programs such as RepeatMasker. 
For example, in human UniGene data, almost 1 million EST 
sequences are discarded during the clustering step because they 
contain repeat sequences or other contaminating sequences, or are 
too short. Furthermore, even in the absence of repeat sequences, 
some EST sequences can align well to multiple locations in the 
genome. Such sequences are also considered ambiguous (putative 
“repeats”), and are removed from the analysis. PolyA/T tails pose 
a similar masking challenge. Since polyA/T sequences may not be 
found in the genome (they are added during mRNA processing), 
their presence can artefactually depress the apparent alignment 
quality of an EST vs. genomic sequence. For this reason, polyA/T 
tails are removed by some methods using EMBOSS, TRIMEST. 
It is important to remember that putative poly-A sequences may 
be genuine genomic sequence, so trimming them may itself intro-
duce ambiguity or cause artefacts.

Alignment of transcript sequences to the genome sequence 
is important for reducing incorrect mixing of paralogous 
sequences, and for validating putative splices (see Note 2). 
Several methods are commonly used to align all EST and mRNA 
sequences against complete genome sequences. Previously, 
researchers used a combination of BLAST and SIM4 (12, 33).
However, BLAST can take several months on human ESTs vs. the 
human genome (on a single CPU). BLAT is a faster alignment 
tool than BLAST, but gives fragmented alignments when align-
ment quality is imperfect (e.g., due to EST sequencing error 
and fragmentation). To get better results, researchers have 
combined BLAT and SIM4 (13–15), because SIM4 considers 
GT…AG canonical consensus splice sites; gaps (splices) in the 
alignment should normally match this consensus. To simplify 
this process, recently GMAP and SPA have been introduced. 
Both alignment tools consider GT…AG consensus splice sites, 
and also run faster. SPA was developed on the foundation of the 
BLAT library; GMAP shows superior speed in alignment. They 
can produce slightly different alignments. Since ESTs can have 
high rates of sequencing error (up to 10%) within local regions, 
and are also randomly fragmented, pairwise alignment (i.e., 
aligning each EST individually against the genomic sequence) 
can give suboptimal results compared with multiple sequence 
alignment (i.e., all ESTs for a gene simultaneously against the 
genomic sequence). Multiple alignment methods that can deal 
with the branching structure of alternative splicing (e.g., Partial 
Order Alignment, POA) (122–126) can improve AS detection 
sensitivity and reduce alignment artefacts.
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Most alignment tools give several possible alignments for a given 
EST sequence, either to different genomic locations, or suboptimal 
alignments to the same genomic locus. AS detection methods 
generally screen out ambiguous cases (multiple, indistinguishable 
hits), and choose only the best hit as measured by percent iden-
tity and alignment coverage. If there are many high-scoring “best 
hits,” these alignments should be dealt with carefully, because 
such sequences may come from repeat sequences. Strictly for the 
purposes of detecting alternative splicing, all unspliced alignments 
can be removed at this step. Most ESTs with unspliced alignments 
are from the 3′UTR, but some may also represent experimental 
artefacts such as genomic contamination (see Note 2). Additionally, 
the total aligned region should be larger than 100bp after repeat 
masking, with a minimum of 96% identity and 50% coverage to 
reduce artefacts (see Note 3 for more details). More than 95% 
of intron sequences have GT…AG consensus, therefore most 
alternative splicing patterns can be found without losing infor-
mation even if we use only the GT…AG canonical splice site. The 
genome alignments can be further corrected by sequence align-
ment tools such as SIM4, GMAP and SPA. These alignment tools 
consider GT…AG consensus to generate valid alignments. As an 
alternative to such arbitrary cutoffs, van Nimwegen and co-workers 
have developed a rigorous probabilistic method for measuring 
the quality of EST evidence for alternative splicing (109).

Procedures to detect alternative splicing patterns from genome 
alignments can be subdivided into two major steps: identifica-
tion of individual alternative splicing events and construction 
of alternative “gene models” incorporating all these data. An 
individual alternative splicing event consists of a pair of mutu-
ally exclusive splicing events. Two splices are mutually exclusive 
if their genomic intervals overlap. (These two splices could not 
co-occur in the same transcript.) It should be noted that this 
“mutually exclusive splicing” criterion excludes many artefacts, 
such as genomic contamination. This simple criterion can be 
made more or less exact. At one extreme, any pair of overlap-
ping splices is reported; at the other extreme one can require 
that the pair of splices must share one splice site but differ at 
the other splice site. This narrow definition works not only 
for alternative-5′ and alternative-3′ splicing, but also for most 
other cases of alternative exon usage and even alternative initia-
tion and polyadenylation (which typically also cause a change 
in splicing). Exons can be represented as alignment blocks in 
mRNA-genome and EST-genome map. Different types of alter-
native splicing can be distinguished by refining the basic rule for 
finding mutually exclusive splices into subtypes based upon the 
specific relation of the splices to each other and to overlapping 
exons, following Fig. 9.1. For example, if an exonic region is 
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located in the middle of an intronic region, it is a skipped exon. 
On the other hand, if an intronic region is located in the middle 
of an exonic region, it is a retained intron. Thus, one can com-
pare all exon coordinates with all intron coordinates in order to 
detect exon skipping and intron retention.

Construction of gene models involves integration of all the 
evidence, beginning from splices and exons and ultimately pro-
ducing full-length isoforms. Whereas early methods relied on 
describing gene models purely in terms of genomic intervals 
(e.g., start and stop coordinates for an exon or intron), Heber 
and co-workers demonstrated that graph representations (“splic-
ing graphs”) have many advantages for dealing with the branched 
structure of multiple isoform models (32). However, it is impor-
tant to stress that there is no guaranteed optimal solution for pre-
diction of alternatively spliced isoforms from raw fragment data 
(e.g., ESTs or microarray probe data). Bioinformatics methods 
fall broadly into two classes: “liberal” methods (e.g., Heber et al.) 
that generate all possible isoforms (by producing all possible com-
binations of the observed alternative splicing events); and more 
“conservative” methods based on maximum likelihood, that seek 
to predict the minimal set of isoforms capable of explaining the 
observed experimental data (127). This is a complex topic; for a 
detailed review see the chapter by Xing and Lee in this volume.

Careful design of the alternative splicing database schema is 
essential to enable powerful “data mining” of these biological 
data. Several principles should be emphasized. First, the database 
should fully integrate biological data (e.g., gene annotation infor-
mation) with the alternative splicing results. Second, the schema 
design should link bioinformatics results (e.g., detection of splices 
and exons) with the underlying experimental evidence for these 
results, as connected but separate tables. Figure 9.2 illustrates an 
example alternative splicing database that follows this “Bayesian” 
schema design, pairing each bioinformatics interpretation table 
(e.g., the “splice” table) with an experimental observation table (e.g.,
the “splice_obs” table) that makes it possible to trace in detail the 
strength and sources of the experimental evidence for each result. 
Collectively, these design principles make it possible to query the 
database for tissue-specific alternative splicing (see the follow-
ing), and other interesting biological questions. In the future, 
new types of alternative splicing can be analyzed from the same 
database, by querying data such as the intron coordinates stored 
in the “splice” table. Pairwise comparison of intron coordinates 
or exon-intron coordinates can be performed by SQL queries 
using this database schema.

As one example application of this schema, one can mine tissue-
specific alternative splicing patterns from the database. Since the 
database connects each splice to individual ESTs and thus to 
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library source information (e.g., tissue type), we can directly mine 
tissue-specific, cancer-specific, or developmental state-specific 
alternative splicing simply by running queries on the database. 
These queries count the number of ESTs for a given splice subdi-
vided by tissue (or tumor vs. normal, etc.), and perform statistical 
tests to identify statistically significant differences. Standard tests 
such as Fisher’s Exact Test are available in software packages such 
as R (http://www.r-project.org/). Such queries have been used 
to identify hundreds of alternative splicing events that are reg-
ulated in a tissue-specific manner (38); these results have been 
experimentally validated. For example, this analysis predicted a 
novel kidney-specific isoform of WNK1 that disrupts its kinase 
domain; subsequent experimental studies have shown that this 
form is expressed specifically in distal tubules and is thought to be 
involved in PHA type II hypertension (128, 129).

Similarly, such a database schema can be used to automate 
design of probe sequences for primer sequences for RT-PCR 
detection of alternative splicing, or microarray detection of alter-
native splicing (16, 27, 130–137). Many biologists are interested 
in verifying bioinformatics predictions of alternative splicing 
using RT-PCR (Reverse Transcription Polymerase Chain Reaction).
RT-PCR is a modification of PCR for amplifying data containing 

Fig. 9.2. Database scheme for UniGene & ASAP. Upper left four tables represents UniGene database and others ASAP 
database. Modified and adapted from ASAP database (17).
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RNA by converting it into DNA, then amplifying it. PRIMER3 
(138) can be used to design adequate primers. New microarray 
designs include both exon and splice junction probes that can 
detect alternative splicing, and typically include systematic cov-
erage of oligonucleotides for all exons in a gene, both constitu-
tive exons and alternative exons. However, in addition to such 
“all-exon” probes, research has shown that splice junction probes 
greatly improve sensitivity for detecting alternative splicing. 
Inclusion junction probes give sensitive detection of inclusion of 
alternatively spliced exons, and exclusion junction probes give 
sensitive detection of exon skipping isoforms. These junction 
probes have been shown to yield good measurements of the level 
of alternative splicing isoforms. These experiments can be per-
formed using cell lines from various tissues or cancer/normal 
cells depending on the purpose of the experiments. However, 
this is a complex topic in its own right; see (16, 27, 130–136) for 
further details.

Comparative genomics data (multiple genome alignments) are 
another important source of information for biologists studying 
alternative splicing. One good way to tap this information is via 
online genome browsers. For example, the UCSC Genome Browser 
(90–92, 139) includes many third party tracks and multiple align-
ments for various species. DNA fragments including alternative exon 
with color coding can be viewed. Also, multiple alignments from 
various species, currently 17 species, can give useful information 
about gene evolution or conservation between species.

A wide variety of experimental and bioinformatics issues can cause 
false-positive and -negative errors (Table 9.1). Existing alter-
native splicing databases have been designed to minimize such 
artefacts. This section reviews types of artefacts and the technical 
issues for catching and reducing them.
 1. More challenging types of transcript variation. Recently there 

has been growing interest in detecting additional forms of 
transcript variation besides alternative splicing, such as alter-
native initiation and polyadenylation. These are somewhat 
more challenging to predict and to distinguish definitively 
from true alternative splicing which can produce somewhat 
similar patterns. In order to find alternative initiation and 
termination events, we need transcript assemblies that have 
full-length cDNA evidences because both events can not be 
found using only “short” EST sequences. Nevertheless, several 
studies have been reported based on transcript assemblies of 
mRNA and EST alignments due to the lack of full-length 
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cDNA. These results may contain false-positive results if the 
transcript assemblies are comprised of EST evidences only. 
Before suitable 3′ UTR databases were developed, detec-
tion of alternative polyadenylation events was focused on 
alignments of EST against mRNA sequences (141–143).
However, evidences from sequence itself are not enough to 
find alternative polyadenylation events because those polyA 
sequences may be part of genomic sequences or sequence 
errors. Legendre et al. developed the ERPIN program to 
enhance the accuracy of polyA site detection using both 
upstream and downstream elements of cleavage sites, which 
distinguish true polyadenylation sites from randomly occur-
ring AAUAAA hexamers (144). By combined use of UTR 
databases (145–149) and genomic alignments, genome-wide 
studies on alternative polyadenylation have been performed 
(150, 151).

Another frontier is the investigation of intron retention 
in plants. In the past, many AS databases have ignored intron 
retention because such EST patterns can arise as experimental 
artefacts, e.g., by incomplete splicing of mRNA, or genomic 
contamination. However, recent researches on plant alterna-
tive splicing show that more than half of alternative splicing 
patterns are intron retention (24, 152). Also, researches on 
human intron retention have been performed (153–155).
More experimental studies will be required to validate the 
possible biological functions of such intron retention events.

 2. Removal of artefacts and contaminated libraries. EST data 
contain significant experimental artefacts that must be 
screened out during genome-wide analyses of alternative 
transcript variation. Genomic contamination, incomplete 
mRNA processing, and library preparation artefacts can 
produce the appearance of “alternative transcripts,” par-
ticularly intron retention or skipping. In general, methods 
have sought to screen these out by setting conservative cri-
teria. For example, rather than simply reporting every pair 
of transcripts that differ from each other, it is common to 
restrict the analysis to validated splices, and specifically to 
pairs of validated splices that share one splice site but dif-
fer at the other splice site. This very specific requirement 
excludes the above types of artefacts while detecting nor-
mal types of alternative splicing, although it may cause false 
negatives for certain alternative transcript events. In some 
cases it is possible to directly identify specific EST libraries 
that are contaminated by artefacts (140).

 3. Fused genes. Chromosome translocation and gene fusion 
are frequent events in various species and are often the cause 
of many types of tumor. The most famous example is the 
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fusion protein BCR-ABL (156–160), the target protein of 
the drug gleevec treating chronic myeloid leukemia (CML). 
CML is associated in most cases with a chromosomal trans-
location between chromosome 9 and 22 that creates the 
Philadelphia chromosome. Besides chromosomal translo-
cation (161–163), two adjacent independent genes may 
be co-transcribed and the intergenic region spliced out so 
that the resulting fused transcript possesses exons from both 
genes (164–166). These two kinds of gene fusion can cause 
trans-splicing and co-transcription with intergenic splicing. 
Several studies seeking gene fusion events have been per-
formed (161, 162, 167–171). These events can interfere with 
detection of alternative splicing. For example, BCR-ABL 
fused sequences can be aligned in two genomic locations 
from BCR and ABL genes. We should find fused genes after 
aligning sequences against the genome.

This work was funded by a Dreyfus Foundation Teacher-Scholar 
Award to C.J.L., and by the National Institutes of Health through 
the NIH Roadmap for Medical Research, Grant U54 RR021813 
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tion on the National Centers for Biomedical Computing can be 
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Chapter 10

Reconstruction of Full-Length Isoforms 
from Splice Graphs

Yi Xing and Christopher Lee

Abstract

Most alternative splicing events in human and other eukaryotic genomes are detected using sequence 
fragments produced by high throughput genomic technologies, such as EST sequencing and oligonu-
cleotide microarrays. Reconstructing full-length transcript isoforms from such sequence fragments is a 
major interest and challenge for computational analyses of pre-mRNA alternative splicing. This chapter 
describes a general graph-based approach for computational inference of full-length isoforms.

Key words: alternative splicing, splice graph, ESTs, microarray, dynamic programming, sequence 
assembly.

Researchers often observe a new splice variant and ask, “What 
does this splice variant do to the protein product of this gene? 
What is the functional consequence of this alternative splicing 
event?” Answers to such questions, however, are not easy to 
get. This is because most novel splice variants are detected using 
sequence fragments (see details in the previous chapter). On the 
other hand, to elucidate the functional impact of alternative splic-
ing on proteins, we need to know the full-length sequences of 
the resulting protein isoforms. This is commonly known as the 
“isoform problem” in analyses of alternative splicing (1–3). This 
section describes a general graph-based approach for inferring 
full-length isoforms of novel splice variants.
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The vast majority of alternative splicing events in humans and 
other eukaryotic species are discovered by high throughput 
genomic methodologies, such as EST sequencing and splicing-sen-
sitive oligonucleotide microarrays (4). These genomics  approaches 
do not detect full-length mRNA transcripts. Instead, they target 
a specific region of a gene. For example, ESTs are widely used for 
discoveries of novel splice variants. ESTs are shotgun fragments 
of full-length mRNA sequences. We can use ESTs to infer local 
information about the gene structure (e.g., whether one exon is 
included or skipped from the transcript), but we cannot directly 
infer full-length isoform sequences from ESTs. In fact, over 
80% of splice variants in the human transcriptome are detected 
using EST data (5), with no corresponding full-length isoforms 
immediately available. The increasingly popular splicing-
sensitive microarrays, on which each probe detects signals from 
a specific exon or an exon-exon junction, generates even more 
fragmented information than ESTs. In addition, many genes 
have multiple alternatively spliced regions. Multiple alternative 
splicing events of a single gene can be combined in a complex 
manner, which further complicates the inference of full-length 
isoforms from individual alternative splicing events.

The isoform problem can be formulated as a sequence 
assembly problem. Given all the sequence observations for 
a gene, including full-length (e.g., cDNAs) and fragmentary 
(e.g., ESTs and microarray probe intensities) sequences, the 
goal is to infer the most likely set of full-length isoforms that 
explain the observed data. Specifically, we need to assemble 
multiple consensus sequences from a mixture of fragmentary 
sequences, corresponding to multiple full-length isoforms of 
a gene.

Over the years, several groups have developed computational 
methods for constructing full-length isoforms (reviewed in 
(2)). In a key study published in 2002, Heber and colleagues 
introduced a new approach of representing gene structure 
and alternative splicing, which is often referred to as the “splice 
graph” (3). This section describes how to use splice graphs to 
infer full-length isoforms from sequence fragments.

2. The Isoform 
Problem
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and Maximum 
Likelihood
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Conventionally, a gene structure is represented as a linear string 
of exons (Fig. 10.1A), ordered according to the positions of 
exons from 5′ to 3′. This simple representation, however, is insuf-
ficient for the analyses of alternative splicing and the inference of 
full-length isoforms. By definition, alternative splicing introduces 
branches to the gene structure, disrupting the validity of a single
linear order of all exons.

In a pioneering study, Heber and colleagues introduced the 
concept of “splice graph” (3), which is a directed acyclic graph 
representation of gene structure. In the splice graph, each exon 
is represented as a node, and each splice junction is represented 
as a directed edge between two nodes (i.e., exons) (Fig. 10.1B). 
Different types of alternative splicing events, such as exon skip-
ping, alternative 5′/3′ splicing, and intron retention, can be eas-
ily represented using splice graphs. Fig. 10.2 shows the splice 
graph of a multi-exon human gene TCN1. The observed exon 
skipping event of exon 2 is represented as a directed edge from 
node 1 to node 3. Similarly, the observed exon skipping event of 
exon 5/6 is represented as a directed edge from node 4 to node 
7. One EST from unspliced genomic DNA is represented as a 
single isolated node of the splice graph (node 8). Under such a 
representation, the isoform problem becomes a graph traversal 
problem. Multiple traversals of the splice graph correspond to 
multiple isoforms of a gene. Furthermore, the splice graph can 
be weighted. The edge weight reflects the strength of experi-

mental evidence for a particular splice junction. 
For EST data, this can be the number of ESTs on 
which two exons are connected by a splice junc-
tion. For microarray data, this can be the signal 
intensity of a particular exon junction probe.

To construct a splice graph, we start from 
sequence-based detection of exon-intron struc-
ture and alternative splicing (which is described in 
detail in the previous chapter). We treat each exon 
as a node in the splice graph. Alternative donor/
acceptor splicing can produce two exon forms 
with a common splice site at one end, and differ-

ent splice sites at the other end. We treat these two exon forms 
as different nodes in the splice graph. Next, we go through each 
expressed sequence to obtain edge information of the splice 
graph. We connect two nodes with a directed edge if the two 
exons are linked by a splice junction in the expressed sequences. 
The edge weight is set as N if the connection between two 
nodes is observed in N expressed sequences. In the end, we 
obtain a directed acyclic graph (DAG). This graph represents all 
splicing events of a gene and their numbers of occurrences in 
the sequence data.

3.1. Splice Graph 
Representation of 
Gene Structure and 
Alternative Splicing
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Fig. 10.1. Splice graph rep-
resentation of gene structure 
and alternative splicing. (A)
The exon-intron structure 
of a three-exon gene. The 
middle exon is alternatively 
spliced. (B) The splice graph 
representation of the gene 
structure. Alternative splic-
ing of the second exon is 
represented by a directed 
edge from node 1 to node 3.
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Once a splice graph is constructed, we can apply graph algo-
rithms to obtain traversals of the splice graph. There are dif-
ferent ways to do this. Heber and colleagues enumerated all 
the possible traversals of the splice graph (3, 6). A few other 
studies used a set of rules or dynamic programming algorithms 
to obtain the minimal set of traversals that were most likely 
given the sequence observations (5, 7–10). The second strategy 
is more favorable, because in genes with multiple alternative 
splicing events, exons are not randomly joined to create exon 
combinations with no evidence in the observed sequence data 
(2). A more recent method uses the Expectation-Maximization 
algorithm to compute the probability of each possible traversal 
of the splice graph (11).

Figure 10.3A illustrates an isoform reconstruction pipeline 
using a splice graph traversal algorithm Heaviest Bundling (12).
Heaviest Bundling is a dynamic programming algorithm that 
searches for the splice graph traversal with the maximum over-
all edge weight (Fig. 10.3B). Details of the Heaviest Bundling
algorithm were described in (12). For each gene, the isoform 
reconstruction is an iterative process. Each round of the iteration 
consists of two steps: templating, which up-weights the longest 
expressed sequence that is not explained by any constructed iso-
forms; and Heaviest Bundling, which uses the HB algorithm to 

3.2. Splice Graph 
Traversal Using 
Heaviest Bundling 
Algorithm

3.2. Splice Graph 
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Algorithm

Fig. 10.2. Splice graph representation of gene structure of Hs.2012 (TCN1). The top figure shows the gene structure and 
EST-genome alignment of TCN1. The bottom figure shows the splice graph of TCN1.
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search for the mostly likely traversal of the graph, based on its 
current edge weight values. The iteration is terminated once the 
constructed isoforms can explain all the sequence observations. 
Figure 10.3C shows the splice graph and isoform reconstruction 
for a hypothetical 3′-exon gene. The exon-inclusion form has a 
higher edge weight and is recognized as the “major” isoform. 
The exon-skipping form has a lower edge weight and is recog-
nized as a “minor” isoform.

Once the putative isoforms are constructed, it is important to 
assess whether a putative isoform might result from artifacts 
in the EST data. Multiple rules can be used to filter puta-
tive isoforms, by checking: (1) whether the translated protein 
sequence is too short (e.g., < 50 aa); (2) whether the similar-
ity of the translated protein sequence to the major protein 
isoform is too low (e.g., < 50%); (3) whether the transcript 

3.3. Filtering of 
Putative Isoforms
3.3. Filtering of 
Putative Isoforms

Fig. 10.3. Heaviest bundling and isoform reconstruction. (A) An overview of the isoform reconstruction pipeline. (B) Heavi-
est bundling algorithm. (C) Heaviest bundling and isoform reconstruction for a hypothetical three-exon gene.
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has no stop codon at all; (4) whether the transcript contains a 
premature stop codon and is a likely target of the mRNA non-
sense-mediated decay pathway (13). Such filters are heuristic; 
nevertheless, they can eliminate a lot of noise and artefacts in 
the EST sequence data. After a set of high-confidence protein 
isoforms are obtained, we can apply many sequence analysis 
tools to assess how alternative splicing modifies the protein 
product (for two examples, see (14, 15)).

A few labs have constructed online databases with computa-
tionally inferred full-length transcript and protein isoforms. 
A list of such online resources is provided in Table 10.1. In 
addition, there are several new isoform construction algorithms 
(10, 11, 16), although no database has been built using these 
new methods.

4. Web Resources 
and Computational 
Tools for Full-
Length Transcript/
Protein Isoforms

4. Web Resources 
and Computational 
Tools for Full-
Length Transcript/
Protein Isoforms

Table 10.1
Web resources for full-length isoforms

Resources Descriptions/URLs

Alternative Splicing 
Gallery (ASG) (6)

22127 splice graphs of human genes. Exhaustive enumerations 
of splice graphs produced 1.2 million putative transcripts. 

http://statgen.ncsu.edu/asg/

ASAP Database (17) Alternative splicing, transcript and protein isoforms of human 
and mouse genes. The most likely isoforms are constructed 
for each gene, followed by heuristic filtering of putative 
isoforms.

http://www.bioinformatics.ucla.edu/ASAP/

ECgene (8) A genome browser that combines results from EST cluster-
ing and splice-graph based transcript assembly. ECgene 
has alternative splicing data for human, mouse and rat 
genomes.

http://genome.ewha.ac.kr/ECgene/

DEDB (Drosophila melanogaster
Exon Database) (9)

An exon database for Drosophila melanogaster. Gene structure 
is represented in a splice-graph format.

http://proline.bic.nus.edu.sg/dedb/

ESTGenes (7) Alternative splicing and isoform annotation integrated with 
the Ensembl genome browser. A minimal set of compatible 
isoforms is derived for each gene.

http://www.ensembl.org/index.html
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Chapter 11

Sequence Segmentation

Jonathan M. Keith

Abstract

Whole-genome comparisons among mammalian and other eukaryotic organisms have revealed that they 
contain large quantities of conserved non–protein-coding sequence. Although some of the functions of this 
non-coding DNA have been identified, there remains a large quantity of conserved genomic sequence that is 
of no known function. Moreover, the task of delineating the conserved sequences is non-trivial, particularly 
when some sequences are conserved in only a small number of lineages. Sequence segmentation is a statistical 
technique for identifying putative functional elements in genomes based on atypical sequence characteristics, 
such as conservation levels relative to other genomes, GC content, SNP frequency, and potentially many 
others. The publicly available program changept and associated programs use Bayesian multiple change-point 
analysis to delineate classes of genomic segments with similar characteristics, potentially representing new 
classes of non-coding RNAs (contact web site: http://silmaril.math.sci.qut.edu.au/~keith/).

Key words: Comparative genomics, non-coding RNAs, conservation, segmentation, change-points, 
sliding window analysis, Markov chain Monte Carlo, Bayesian modeling.

A common practice in genomic and comparative genomic studies 
is to analyze whole-genome profiles via sliding window analysis—
a form of moving average or Loess analysis. Some prominent 
examples include: sliding window analyses of G+C content, 
gene density, and repeat density in the human genome (1, 2);
G+C content and repeat distribution in the mouse genome, and 
human versus mouse conservation (3); and human versus chim-
panzee conservation (4). Some packages that can perform this 
kind of analysis include ConSite (5) and rVista (6). The purpose 
of this type of analysis is to identify parts of the genome or 
genomes under study that are atypical in terms of some property, 
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whether it be GC content, conservation level, gene frequency, 
transposon frequency, or a combination of several properties. 
Atypical regions can be interesting for a variety of reasons, but 
one is that they may contain functional genomic components. 
Sophisticated methods for detecting protein-coding genes are 
available (see Chapter 8), and indeed most protein-coding genes 
have been identified in the human genome and other sequenced 
genomes. However, it is thought that most large, eukaryotic 
genomes contain numerous unidentified functional, non–
protein-coding components. For example, it is estimated that 
the human genome contains at least twice as much conserved 
(and hence functional) non–protein-coding sequence as protein-
coding sequence (3, 7–9). Methods for detecting these elements 
are much less well-developed. Sliding window analysis may pro-
vide clues that will help to identify such elements.

Figure 11.1 displays an example of a sliding window anal-
ysis for an alignment of a part of the genomes of two fruit 
fly (Drosophila) species D. melanogaster and D. simulans. The 
two profiles shown were constructed as follows. First, a pair-
wise alignment of these two species was downloaded from the 
UCSC web site (http://genome.ucsc.edu/), encompassing 
genomic coordinates 1580575 to 1584910 of chromosome 
arm 3R of D. melanogaster. For each window of length 11 bases 
in this region of D. melanogaster, the proportion of bases that 
are aligned to a matching base was calculated and this value was 
assigned to the position at the centre of the window. This process 
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Fig. 11.1. Profiles of the proportion of bases at which matches occur in an alignment of the fruit fly species D. melanogaster
and D. simulans, for sliding window sizes of 11 bases (gray trace) and 101 bases (black trace).
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was repeated for a window size of 101 bases. Note that, for both 
window sizes, there are several positions where the proportion 
of matches seems to be higher than the surroundings, and these 
may correspond to conserved features. However, the two pro-
files are quite different. The profile produced with a smaller 
window size is noisier, but also exhibits sharper changes, and in 
particular results in much deeper troughs at some positions. As 
shown in Section 3.6, some of these change-points correspond 
to exon-intron boundaries.

Although a useful, quick, and easy analysis for identifying regions 
of high conservation or other irregularity, sliding window analysis 
has a number of problems. In particular, it is usually not clear 
what the size of the sliding window should be. Large window 
sizes tend to “blur” sharp changes in the property of interest, 
as Fig. 11.1 illustrates, because each value in a sliding window 
profile is actually an average over a region of length equal to the 
window size. Using smaller windows can reduce this problem, 
but this decreases the signal-to-noise ratio.

An alternative analysis, more difficult but potentially more 
sensitive, is sequence segmentation, also called multiple change-
point analysis. In this approach, one attempts to identify the 
locations of change-points at which sharp changes in a particular 
property of interest occur. The best known of these approaches is 
the phylo-HMM based method PhastCons developed at UCSC 
(9, 10) specifically for analyzing multi-species conservation. 
However, numerous other approaches have been developed (for 
some examples, see (11–21)), including a number of Bayesian 
approaches (22–31).

This chapter describes some of the practical issues involved 
in implementing the Bayesian approach of Keith and co-workers 
(25, 26, 32), encoded as the C program changept. An attrac-
tive feature of this approach is that it includes a classification of 
segments into groups that share similar properties, such as con-
servation level and G+C content. Moreover, it estimates, for 
each genomic position, the probability that that genomic posi-
tion belongs to each class. The ability to estimate probabilities 
in this way derives from the Bayesian modeling framework, but 
changept is orders of magnitude faster than alternative Bayesian 
genomic segmentation methods, and unlike them it can feasibly 
be applied to whole eukaryotic genomes.

The approach can be used to segment according to various 
properties, but this chapter focuses specifically on its use to analyze 
conservation between two species (see Note 1). To illustrate the 
method, data and results obtained for the closely related fruit fly 
species D. melanogaster and D. simulans are used throughout.

A feature of changept is that it does not merely generate a single 
segmentation, optimized according to some scoring function. 

1.2. Change-Point 
Analysis
1.2. Change-Point 
Analysis
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Rather, it generates multiple segmentations, sampled from a poste-
rior distribution over the space of all possible segmentations. This 
feature is typical of Bayesian methodologies that rely on Markov 
chain Monte Carlo (MCMC) simulation. Although a full descrip-
tion of the Bayesian model and sampling algorithm is beyond the 
scope of this chapter, a few brief explanations are necessary. Further 
details of the model and MCMC sampler are found in papers by 
Keith and co-workers (25, 26) and in a submitted paper (32).

Each segmentation output by changept consists of the number k of 
change-points (segment boundaries) and their positions in the 
input sequence. The conservation level (that is, the probability of 
a match) is assumed to be drawn from a mixture of beta distribu-
tions. The number of components g in the mixture model must 
be specified by the user, but we discuss in the following a method 
for deciding the appropriate number. The mixture proportions 
p = (p1, …, pg) and the parameters of the beta distributions 
(collected into a single vector a) are also sampled from a pos-
terior distribution and are output along with each segmentation.

Two features of MCMC algorithms that need to be explained here 
are the burn-in phase and sub-sampling. MCMC methods involve 
a Markov chain for which the limiting distribution is the distri-
bution from which one wishes to sample, in this case a posterior 
distribution over the space of segmentations. However, the chain 
approaches this distribution asymptotically, and thus the elements 
generated early in the chain are not typical and need to be dis-
carded. This early phase of sampling is known as burn-in, and we 
discuss in the following ways to determine at what point to end 
the burn-in phase. Even after burn-in, it is an inefficient (and often 
infeasible) use of disk space to record all of the segmentations gen-
erated by the algorithm. The algorithm therefore asks the user to 
specify a sampling block length. The sequence of segmentations will 
be divided into blocks of this length and only one element in each 
block will be recorded for future processing. Ways of deciding the 
sampling block length are discussed in the following.

The changept program has recently been generalized to allow for 
segmentation on the basis of multiple data types simultaneously (see
Note 2). Although this work is still at an early stage, preliminary 
results suggest that the three classes of genomic region identified in 
D. melanogaster based on conservation level alone (see the follow-
ing) can be divided into a large number of sub-classes. Some of these 
sub-classes may represent collections of functional non-coding 
RNAs. Thus this work is at an exciting stage, and may lead to the 
discovery of whole new classes of non-protein-coding RNAs.

The changept program should be regarded as a work in 
progress for the sensitive detection and classification of genomic 
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elements. Software will be made available from the contact web 
site as it is developed and updated.

The illustrative analyses described below were performed on a 
cluster of approximately 120 PCs, each with 800 MHz Celeron 
CPUs and 128Mb of memory. However, the programs can also 
be run on a single desktop or laptop. Source code for some of the 
programs described in the following is available from the contact 
web site. This code has been successfully compiled and run under 
both Unix, Windows, and Mac OS X operating systems with 
32-bit processors. Some of the programs described in this chapter 
are only available as Windows executables, without source code, 
also at the contact web site.

The raw data used in the illustrative analyses consisted of a pair-
wise whole genome alignment of the fruit fly species D. melanogaster
to the species D. simulans. These species diverged approximately 
3–5 Mya (33, 34). The alignments were downloaded from the 
UCSC Genome Browser (http://genome.ucsc.edu/) in axt for-
mat (see http://genome.ucsc.edu/goldenPath/help/axt.html for 
a description of this format).

A small extract of the pairwise alignment of D. melanogaster and 
D. simulans in axt format is shown in Fig. 11.2A. The main 
segmentation algorithm changept takes as input, not axt files, 
but rather a text file containing a binary sequence representing 
matches and mismatches, such as that shown in Fig. 11.2B. The 
conversion of axt format to changept format is straightforward 
and consists of the following steps:
 1. Data cleaning
 2. Generation of binary sequences
 3. Pooling

The first step involves discarding sequences for which the 
alignments are suspect, either because they involve a high pro-
portion of indels and mismatches, because the alignment blocks 
are very short, or because they are likely to have atypical char-
acteristics and would thus be better analyzed separately. For the 
illustrative Drosophila analyses, this step consisted of discarding 

2. Systems, Data, 
and Databases
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all but the aligned 2L, 2R, 3L, 3R, and X chromosome arms of 
D. melanogaster (see Note 3).

The second step involves substituting single labels for the 
columns of the alignment. A match becomes a “1,” a mismatch 
becomes a “0” and an indel becomes an “I.” Note that the indels 
are ignored by the main program changept. The boundaries of 
alignment blocks are marked with a # symbol. The hashes are 
treated as change-points with fixed positions. For the Drosophila
analysis, binary sequences were individually generated for each of 
the 2L, 2R, 3L, 3R, and X chromosome arms. In the third step, 
binary sequences are concatenated in various combinations for the 
purpose of evaluating whether they are better modeled separately 
or together. For the Drosophila analysis, the 2L, 2R, 3L, and 
3R sequences were concatenated to generate a binary sequence 
labeled E, and this was concatenated with the X sequence to gen-
erate a binary sequence labeled EX.

Two programs genbiomultialign.exe and genchangepts.
exe (available at the contact web site) convert .axt files to the 
required binary format. These programs are currently only avail-
able as Windows executables. Figure 11.3 displays an example 
of an MSDOS script used to run these programs. The script first 
defines the directories where various input and output files are 
located. The input files are the .axt files and the file chromlens.csv. 
This latter file contains the chromosome lengths and is available 
at the contact web site. The program genbiomultialign outputs 
the file dm2vsdroSim1.algn, which is used by other programs in 
this suite, including genchangepts. The latter program outputs 
the main input files for changept. It also produces files with the 
extension .map, which specify the genomic coordinates of each 
alignment block. This is required later to map profiles back to 
genomic coordinates for display purposes. Finally, genchangepts 
also produces files with an extension .sym25, which are used by 
other programs in this suite.

Once the binary sequences have been generated and the code 
compiled, the segmentation algorithm is ready to run. Typing 
changept at the command line produces the following message:

To correctly use this program, you must have 
the following parameters:

-i input_file_name (<99 char)
-sf initial segmentation file (optional, <99 char)
-o output_file_name (<99 char)
-n num_samples (integer, >=1)
-b num_burn (optional, integer, <num_iterations, 

default 0)
-s sampling_block_size (optional, integer, >=1, 

default 1)

3.2. Running changept3.2. Running changept
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set experiment=exp1
set dm2vsds1axts=d:\goldenPath\dm2\vsDroSim1
set basedir=d:\bioexplorer
set bin=%basedir%\bin
set aligns=%basedir%\alignments
set resources=%basedir%\resources
set results=%basedir%\results\dm2centric
set expdir=%results%\%experiment%
set logs=%expdir%\logs

set LogLev=-f3 -F%logs%\gendm2vsdroSim1.log -S3

%bin%\genbiomultialign.exe %LogLev% -m0 -x -rdm2 -RdroSim1 -c%resources%\chromle
ns.csv -i%dm2vsds1axts%\*.axt -o%aligns%\dm2droSim1.algn -t”dm2vsdroSim1” -d”UCS
C dm2 vs droSim1”

call :genchpts dm2 DroSim1 dm2droSim1.algn dm2vsdroSim1_2L  chr2L
call :genchpts dm2 DroSim1 dm2droSim1.algn dm2vsdroSim1_2R  chr2R
call :genchpts dm2 DroSim1 dm2droSim1.algn dm2vsdroSim1_3L  chr3L
call :genchpts dm2 DroSim1 dm2droSim1.algn dm2vsdroSim1_3R  chr3R
call :genchpts dm2 DroSim1 dm2droSim1.algn dm2vsdroSim1_X  chrX

goto :completed

:genchpts
SETLOCAL

set refspecies=%1
set relspecies=%2
set alignfile=%3
set outprfx=%4
set chrom=%5

%bin%\genchangepts.exe %LogLev% -i%aligns%\%alignfile% -o%expdir%\%outprfx%_
chgpt.txt -r%refspecies% -R%relspecies% -c”%chrom%” -m0
%bin%\genchangepts.exe %LogLev% -i%aligns%\%alignfile% -o%expdir%\%outprfx%_
sym25.txt -r%refspecies% -R%relspecies% -c”%chrom%” -m1

ENDLOCAL
goto :EOF

:completed
echo All Processed

Fig. 11.3. Script used to execute the programs genbiomultialign and genchangepts, 
to produce input files for changept and other programs.

-a alphabet_size (optional, integer, 2–10, 
default 2)

-p prop_changepts_init (optional, double, 0<p<1, 
default 0.01)

-pa hyperparameter for phi (optional, double, pa >0, 
default 1.0)

-pb hyperparameter for phi (optional, double, pb >0, 
default 1.0)

-ng number of groups (optional, integer, 0<ng<=10, 
default 1)

-nc numberofchains(optional,integer,1<=nc<=10, 
default 1)
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-hp heating parameter for AP (optional, double, 
hp>=0, default 1.0)

-r random number seed (optional, integer, 
default=time)

-pf samples_per_file (optional, integer, > =1,
default num_samples)

-nf number_of_output_files (optional, integer, 
>=1, default num_samples/samples_per_file)

The switches introduce the following terms:
-i: The name of the text file containing the binary sequence 

to be segmented. As always, care should be taken to use 
file names that clearly identify the data. At the very 
least, the file name should indicate the aligned species 
and the chromosome.

-sf: The name of a text file containing a segmentation 
output by a previous changept run. If the file con-
tains multiple segmentations, all but the last one will 
be ignored. This option is useful for restarting the 
Markov chain where a previous run ended.

-o: The name of the file to which segmentations will be 
output. Again care should be taken to clearly identify 
the source of the segmentations. At the very least, 
the output file name should include the input file 
name and the number of groups used (see -ng in the 
following).

-n: The number of segmentations to be sampled. These 
will be output to output_file_name. A sample size of 
1000 is typical.

-b: The number of sampling blocks to discard before 
sampling begins. This option is useful for prevent-
ing changept from producing output during burn-
in. However, since the user typically cannot predict 
how many sampling blocks will be required to achieve 
burn-in, it should not be assumed that burn-in has 
occurred once sampling begins. The user may prefer 
to retain the default “-b 0” so that no initial sam-
pling blocks are discarded. However, if disk space is an 
issue, the user may wish to discard 100 or more initial 
segmentation blocks.

-s: The number of updates performed in each sam-
pling block. A useful heuristic is to set this value to 
about one tenth of the length of the input sequence. 
Alternatively, if the user knows roughly how many 
change-points will be identified (and it is a good idea 
to perform a preliminary run to determine this), this 
parameter can be set to about ten times this number.
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-a: The number of labels used in the input sequence. This 
parameter allows for non-binary input sequences. Up 
to 10 labels are permitted. (See Note 1.)

-p: This parameter controls the randomly chosen initial 
segmentation. Its value is irrelevant if the ‘-sf ’ switch 
is used. Otherwise the initial segmentation will be 
generated by throwing a uniform random number 
between 0 and 1 for each sequence position at which 
a change-point is not fixed, making that position a 
change-point if the random number is less than the 
value of this parameter. The algorithm is not sensitive 
to the value of this parameter, and the default value 
seems to work well in all cases so far.

-pa, -pb: The parameters of a beta distribution specifying 
the prior probability distribution for a parameter 
φ, which is the probability that any given sequence 
position is a change-point. More specifically, φ is 
the probability that a sequence position at which 
there is not a fixed change-point (i.e., an alignment 
block boundary) is a change-point. These values are 
useful if there is prior information about how many 
non-fixed change-points are present in the sequence. 
Otherwise, the default parameters specify a uniform 
(and hence uninformative) prior.

-ng: The number of groups into which to classify segments.
-nc, -hp: These parameters are used to implement a Metropolis-

coupled Markov chain Monte Carlo algorithm (35).
They are currently experimental and may be removed 
from future versions.

-pf: The number of segmentations to output to each file. This 
switch is useful if the user wishes to break the output file 
up into several smaller files. This is sometimes necessary, 
as the output files can be very large and may exceed the 
maximum length of text files expected by some oper-
ating systems. Moreover, should one wish to restart 
the Markov chain where a previous run finished (using 
the −sf switch), the algorithm can more rapidly find the 
final segmentation in a smaller file. Note that the out-
put files are differentiated by the addition of extensions 
“.1”, “.2” and so on.

-nf: The number of output files to generate. This will only 
affect the output if one specifies fewer output files 
than are necessary given the values of the −n and −pf 
switches. In that case, the earlier output files will be 
overwritten. This may be useful if the user wants to 
monitor convergence while changept is running, and 
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thus sets the sample size very large, with the intention 
of stopping the algorithm once the files generated 
during burn-in are overwritten.

For the Drosophila analysis of the EX file, using a three-group 
model, the following command was executed:

changept –i dm2vsdroSim1_EX_chgpt.txt –o
dm2vsdroSim1_EX_chgpt.txt.3grps –b 200 -n 1000 
–s 30000000 –ng 3 –pf 100

As always in MCMC, it is important to ensure that the chain 
has converged and that samples obtained during burn-in are dis-
carded. Numerous methods for assessing convergence have been 
developed, but a common and successful method is to visually 
inspect graphs of time series for various parameters and statistics
of interest. To facilitate this, changept outputs a log file (the file 
name of which is the output file name with the extension “.log” 
appended). An excerpt of the top of a log file for a three-group 
model is shown in Fig. 11.4. The first few lines contain the 
command used to execute the run, the seed used by the random 
number generator (based on the current time), the length of 
the input sequence and the number of fixed change-points. After 
the heading “Beginning MCMC” each line corresponds to a sampled
segmentation in the main output file. Each line contains:
 1. The sample number
 2. The number of change-points
 3. The mixture proportions of each group (three columns in 

Fig. 11.4)
 4. The parameters of the beta distribution for each group, in 

pairs (six columns—three pairs—in Fig. 11.4)
 5. The log-likelihood

3.3. Assessing 
Convergence
3.3. Assessing 
Convergence

changept -i dm2vsdroSim1_EX_chgpt.txt -o dm2vsdroSim1_EX_chgpt.txt.3grps -n 2000 -s 10000000 -ng 3 -pf 100 
Random number seed=1176272106
Reading sequence.
Sequence length=104551330.
numfixed=29046
Beginning MCMC.
1. 547665 0.228599 0.047880 0.723521 1.255652 23.554376 326.997638 443.251581 1.028164 13.318207 -21261316.897484 
2. 837554 0.565539 0.028305 0.406156 1.610463 36.877827 678.826174 913.076209 1.054476 10.865174 -21221275.319483 
3. 921873 0.586653 0.026666 0.386682 1.642488 39.649917 620.570893 835.114015 1.129389 11.510267 -21213618.884855 
4. 1040743 0.535950 0.023767 0.440283 1.805758 51.334139 860.390289 1152.575155 1.300227 13.694245 -21209539.357014 
5. 1130941 0.525753 0.024949 0.449298 1.857796 57.372117 522.588598 702.253217 1.364315 14.486255 -21201871.683409 

Fig. 11.4. Top lines of the log file output by changept for the three-group EX run. The header contains the command 
executed, the random number seed, length of the binary input sequence, and the number of fixed change-points (block 
boundaries). The next five lines (wrapped for this display) contain key parameters for the first five segmentations output. 
Each line shows the number of change-points, mixture proportions p (3 values), beta parameters a (3 pairs of values) 
and the log-likelihood.
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It is highly recommended that time-series be plotted for the log-
likelihood, the number of change points, the mixture proportions, 
and the means of the beta distributions for each group (given by 
a/(a + b), where a and b are the second and first values in each pair 
of beta parameters, respectively) and the sum of the beta parameters 
for each group. It is important that all parameters tested reach a 
stable regime before the burn-in phase is judged complete.

To facilitate graphing of these time series, a Microsoft Excel 
file named “changept_templates.xls” may be downloaded from 
the contact web site. The content of log files below the heading 
“Beginning MCMC” can be simply cut and pasted into the appro-
priate worksheet of this Excel file, depending on the number of 
groups. The above-mentioned time-series will then be displayed 
automatically, to the right of the data.

An example of a graph of a time-series for the mixture pro-
portions is shown in Fig. 11.5. Note that the chain appears to 
have converged prior to the beginning of sampling (note that 
200 initial sampling blocks were discarded in this run) since the 
mixture proportions vary only slightly around stable means for 
the entire run. The same is true of the other parameters graphed 
using the Excel template. Note 4 describes another technique for 
assessing convergence.

Fig. 11.5. The mixture proportions (p) for each of the three groups in the analysis of the D. melanogaster versus 
D. simulans EX data. These values represent the approximate proportion of segments (not bases) in each group. The 
proportions are stable from the very first sample, indicating that convergence probably occurred during the discarded 
iterations specified using the –b option.
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In principle, the number of groups in the mixture model is a 
parameter for which posterior probabilities can be calculated. 
Similarly, the algorithm itself should determine whether all chro-
mosomes should be analyzed separately or whether some should 
be pooled. However, changept does not currently have this capa-
bility. At present, it is recommended that independent runs of 
changept with different numbers of groups and patterns of pool-
ing be performed. These can then be assessed using the model 
comparison technique described in the following.

For the Drosophila analysis, three different pooling scenarios 
were explored:
 1. 2L, 2R, 3L, 3R, X each analyzed independently
 2. 2L, 2R, 3L, 3R pooled (i.e., concatenated to form a sequence 

labeled ‘E’), with X analyzed separately
 3. 2L, 2R, 3L, 3R, X pooled (i.e., concatenated to form a 

sequence labeled ‘EX’)
The changept program was run for each of these scenarios and 
with the number of groups ranging from 2 to 6. Independent runs 
were executed on different processors in the computing cluster. 
Since the first pooling scenario treats each chromosome arm inde-
pendently, it required a total of 25 independent runs (one for each 
chromosome arm and number of groups). Similarly, the second 
pooling scenario required 10 runs and the third required 5.

The following score function can be used to compare the 
various models. It is an information criterion similar to the Akaike 
Information Criterion. For each pooling scenario and number of 
groups, we compute the value:

2 2k L− ln

where k  is the average number of change-points in the sample gen-
erated by that run and lnL  is the average log-likelihood. Note 
that for the first pooling scenario, the average number of change-
points is the sum of the averages for the individual chromosomes, 
and similarly for the average log-likelihood and for the second 
pooling scenario. The preferred model is the one with the lowest 
value of the information criterion.

For the Drosophila analysis, it was found that the third pool-
ing scenario—complete pooling—produced the lowest score, 
regardless of the number of groups. The scores of the EX runs 
for different numbers of groups are shown in Table 11.1. In 
this example, the best scoring model was the three-group model, 
although the six-group model also had a low score. It should be 
noted that the three and six-group models have similar distribu-
tions of conservation levels (see following section) the only dif-
ferences being the addition of two groups with a low proportion 
of segments and the splitting of the most rapidly evolving group 
into two closely spaced sub-groups.

3.4. Determining 
Degree of Pooling and 
Number of Groups
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As mentioned, a mixture of beta distributions is fitted to the distri-
bution of conservation levels. The fitted distribution can be plotted 
for any sample using the mixture proportions and beta parameters 
obtained in that sample. The density is given by:

p x B i( )| , ( | )( )p a p a= i
i

k

x
=
∑

1

where B(x | a (i)) is a beta density given by:
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The Excel template pages mentioned above and available 

from the contact web site contain calculation of these densities 
at intervals of 0.001 in the interval [0,1] and a graph of the beta 
density for each mixture component normalized so that the area 
under each density is the mixture proportion. The sum of the 
components is also shown. To display the graph for any given 
sample, execute the following steps.
 1. Paste the log file output so that the upper left corner is the 

A1 cell of the appropriate worksheet (based on number of 
mixture components).

 2. Locate the graph of the mixture density (top centre of the 
six graphs displayed to the right of the calculations).

 3. Enter the row number containing the desired sample in the 
cell at the top left of the graph.

An example for the three-group Drosophila results is shown in 
Fig. 11.6.

3.5. Plotting the 
Distribution of 
Conservation Levels

3.5. Plotting the 
Distribution of 
Conservation Levels

Table 11.1
The Complexity, Fit, and Information scores obtained using 
various numbers of groups for the D. melanogaster 
versus D. simulans EX data

# Groups Complexity Fit Information

2 1421883.2 −21199193.8 45242153.9

3 1389290.2 −21191548.4 45161677.1

4 1389821.5 −21191266.7 45162176.3

5 1390087.7 −21191181.7 45162538.6

6 1390763.6 −21190944.2 45163415.5
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The program changept outputs segmentations sampled from 
the posterior distribution in one or more text files, with user 
specified file names as discussed. The sampled segmentations can 
be used to compute various probabilities. In particular, they 
can be used to estimate, for each position in the input sequence, 
the probability that that position belongs to a given group. The 
result is a profile for that group that can be plotted across the 
genome. Figure 11.7 shows a plot of the profile for the most 
slowly evolving group in the Drosophila analysis. Note that there 
are several well-defined slowly evolving regions, and that these 
correspond to exons of a known protein-coding gene.

The program readcp, which can be downloaded from the 
contact web site, takes a segmentation file as input and generates 
a profile for the desired group. Typing readcp at the command 
line produces the following message:

To correctly use this program, you must have 
the following parameters:
-i sequence_file_name
-c cut_point_file_name1 … (up to 150 file names)
-b num_burn (optional, default 0)
-s num_skip (optional, default 0)
-a alphabet_size (optional, default 2)
-ng num_groups (optional, default 2)
-pg list of profiled group numbers (optional, 

default ng-1)
-notheta suppress theta profile (optional)
-nop suppress p profile (optional)

3.6. Generating and 
Viewing Profiles
3.6. Generating and 
Viewing Profiles

Fig. 11.6. Beta distributions for the three classes of conservation levels observed in the EX alignment of D. melanogaster
to D. simulans, normalized in their mixture proportions. The weighted sum of the three beta distributions is also shown 
(in gray). The values of p and a are those obtained for the final sample of a run (sample 1267).
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The switches introduce the following terms:
-i: The file name of the binary input sequence. This 

must be the same as the binary sequence supplied as 
input to changept. Note that, although changept is 
equipped to handle sequences with up to 10 distinct 
labels, readcp can currently only process binary files. 
This is likely to change in the near future.

-c: names of up to 150 segmentation files generated by 
changept. These will be processed to generate the 
profile. The ability to process multiple files is useful 
if the user wants to combine the results of multiple 
independent runs or if the output of changept was 
broken up into smaller files using the –pf switch.

-b: The value of the segmentation index to be regarded as 
the last burn-in sample. (The “segmentation index” 
referred to here is merely the ordinal number of the 

Fig. 11.7. Profiles obtained using changept for the D. melanogaster versus D. simulans EX analysis and for a similar anal-
ysis based on an alignment of D. melanogaster versus D. yakuba. The top pane shows the two profiles obtained. The D. 
simulans profile has shallower troughs than the D. yakuba profile for the same region of D. melanogaster. Note 
that the profiles are for the same region of the 3R chromosome arm as that shown in Fig. 11.1. The bottom pane shows 
this same region of the D. melanogaster genome, displayed with the UCSC genome browser. The conservation profile 
displayed in this pane is based on a multiple alignment of 15 insect species. The changept profiles, each based on only 
pairwise alignments, are nevertheless able to clearly delineate exons, with less noise.
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segmentation output by changept; numbering starts 
at one.) Segmentations with this index or lower will not 
be processed. Note that if the output of multiple 
independent changept runs is combined, so that 
multiple segmentations share the same index, all seg-
mentations with index less than or equal to this input 
parameter are regarded as part of the burn-in phase of 
their respective runs, and are discarded.

-s: The number of segmentations to skip between those 
processed to produce a profile. For example, if the 
options “-b 100 –s 1” are used, readcp will only proc-
ess segmentations with the indices 101, 103, 105 
and so on, skipping one segmentation between those 
processed. This option is useful if the user wishes 
to reduce the dependence of adjacent segmentations 
(but see Note 5).

-a: The number of labels used in the input sequence. 
Currently, readcp can only handle binary sequences, 
so the default should always be used.

-ng: The number of groups used to generate the segmenta-
tion file or files. This must be the same as the number 
of groups specified at the command line for changept 
to generate the segmentation files.

-pg: A list of the group indices to use when construct-
ing the profile. Note that numbering of groups starts 
at zero and is ordered according to increasing mean 
of the fitted beta distributions for each group. The 
default value—the number of groups minus one—
thus results in a profile for the most slowly evolving 
group. If more than one group index is listed, the 
resulting profile specifies, for each sequence posi-
tion, the probability that that position belongs to 
any one of the listed groups.

-notheta: This option suppresses the production of the theta 
profile (see the following).

-nop: This option suppresses the production of the usual profile, 
and instead produces only a theta profile (see the 
following).

In addition to group profiles, readcp can also produce a theta profile.
This provides, for each position in the input sequence, the average 
conservation level for that position, regardless of group index.

The profile shown in Fig. 11.7 was obtained by executing 
the command:

readcp –i dm2vsdroSim1_EX_chgpt.txt –c dm2vsdro 
Yak1_EX_chgpt.3grps1…dm2vsdroYak1_chgpt.3grps.10
–ng 3 –pg2
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Group profiles and theta profiles can both be viewed using the 
purpose-designed genome browser bioexplorer available at 
the contact web site. This browser displays .dps files, which are 
generated using the program genchpts2dpts based on a profile 
generated by readcp, and on the .map and .sym25 files generated 
by genchangepts (see Section 3.1). An example script for executing 
genchpts2dpts is available from the contact web site.

The groups identified via the above analysis may have func-
tional significance. As a first step toward identifying the functional 
significance of each group, it is useful to investigate where the 
high-probability regions for a given group are located relative to 
known protein-coding genes. This can be done using the region 
file generated by genchpts2dpts and the program getdist, avail-
able at the contact web site. Typing getdist at the command line 
results in the following message:

Command line input should consist of:
profile_name - name of the file containing 

real values in the interval [0,1]
type_name - name of the file containing the 

types for each value in the profile.
numtypes - number of types (2<=numtypes<=7).
codetype - 0 for bit codes, 1 for integer indices.

The output file will be the profile name with 
.hist appended.

Here the profile name is the name of the text file containing 
the profile for the group that we want to test for enrichment 
or depletion of coding and other sequences. The type name is 
the name of the region file produced by genchpts2dpts. The 
value numtypes is the number of different types identified in 
the type file. There are seven region types in a region file, rep-
resenting coding sequence (CDS), 3' UTR regions, 5' UTR 
regions, introns, regions within 1000 bp upstream of known 
genes, regions within 1000 bp downstream of known genes, 
and intergenic sequence. The “known genes” here are RefSeq 
genes. The code type specifies how the type file represents a 
type. Region files are represented as bit codes. Bit codes allow 
genomic positions to belong to more than one type. Each bit of 
the binary representation for the code is one if the position is of 
the type corresponding to that bit, and zero otherwise.

This program was invoked to process the profile for the most 
slowly evolving group of the Drosophila analysis with the following 
command:

getdist dm2vsdroSim1_EX_chgpt.3grps.p2 dm2vs-
droSIm1_EX_region.txt 7 0

The output of getdist is a file with the extension “.hist” con-
taining a column of values for each region type. The value in 
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row i and column j is the number of sequence positions that 
are  contained in the region of type j and have a profile value 
of 0.001i, rounded to three decimal places. Thus, by dividing 
each value in the table by the column sum, and by accumu-
lating column sums down each column, one can obtain the 
cumulative distribution of profile values for each region. Figure 
11.8 shows a plot of the cumulative distributions for the seven 
regions of the Drosophila melanogaster genome for the most 
slowly evolving group. For example, the graph shows that only 
about 13% of known coding sequence in D. melanogaster has a 
profile value of <0.5 for the most slowly evolving group. Thus, 
the most slowly evolving group is enriched in coding sequence 
relative to, say, intergenic sequence, for which about 25% has 
a slowly evolving profile less than 0.5. Similarly, the slowly 
evolving group is enriched in 3'UTR and 5' UTR sequence.

For the purpose of further investigation of the properties of each 
group, it can be useful to obtain a list of delineated segments 
contained in each group. A simple way to do this is to identify 
all genomic segments for which the profile value for that group 
is higher than some threshold. The most natural threshold value 
is 0.5, since sequence positions with a profile value higher than 
0.5 are more likely than not to belong to the group in question. 
However, more or less stringent thresholds can also be employed. 

3.8. Generating 
Segments
3.8. Generating 
Segments

Fig. 11.8. Cumulative proportion of columns in the D. melanogaster versus D. simulans alignment having a profile value 
less than or equal to the values shown on the horizontal axis, for each of seven genomic fractions. The profile value here 
is the probability that the column belongs to the most slowly evolving group in the three-group analysis.
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The simple program outputsegments, available from the contact 
web site, can be used to threshold profiles in this way. The pro-
gram is called from the command line and must have five input 
parameters. These are:
 1. The name of the .map file for the original input sequence
 2. The name of the .sym file for the original input sequence
 3. The name of the file containing the profile to be thresholded
 4. The name of the output file to which segments will be written
 5. The threshold value to use
Segment files for each of the four groups identified in this 
analysis were obtained using a threshold of 0.5 and are avail-
able for download from the contact web site for further inves-
tigation.

Once segments have been delineated for each group, the next 
step is to determine whether any of the groups corresponds to 
a well-defined class of functional elements, and determine its 
function. It is tempting in the Drosophila example to assume that 
the most rapidly evolving group corresponds to elements under 
positive selection, the most slowly evolving group corresponds 
to conserved sequence, and the intermediate group is neutrally 
evolving. However, preliminary investigations indicate that the 
inclusion of GC content and other data types in the analysis ena-
bles these groups to be further subdivided (see Note 2). Thus it 
may be that these subgroups correspond to classes of functional 
elements, and that all three of the groups we have identified con-
tain one or more such classes of functional elements. Therefore, 
it is prudent to wait until the integration of multiple data types 
into the analysis is complete. Once this has been done, the author 
intends to attribute function to the groups by a variety of means, 
including testing for enrichment of GO terms in the segments of 
each group and their neighborhoods.

 1. The algorithm has also been used to analyze G+C content in 
human chromosome 1 (25) and can be used for many other 
purposes. The changept program takes a binary sequence as 
input, and the distribution of many properties throughout the 
genome could be represented in this way. For example, one 
could segment according to the frequency of a specific motif 
by representing the genome as a binary sequence in which a 
“1” represents the first base of an instance of the motif and all 
other positions are “0.” In fact, the program also accepts input 
that is not binary, and can handle sequences composed of up 
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to 10 labels: “0” to “9.” The number of labels in the input 
sequence must be specified at the command line using the “-a 
alphabet_size” option, where alphabet_size is an integer in the 
range 2–10. The default value is “-a 2.” An application that 
uses four labels is discussed in Note 2. Modifications of the 
algorithm for continuous data types may be made available at 
the contact web site in future.

 2. A simple way to analyze two different data types simultane-
ously is the following. Suppose that one wants to segment 
based on conservation between two species and on the GC 
content of one of the species. Then one can construct a four-
character sequence based on a pairwise alignment of the two 
species, using the following code for each column of the 
alignment.
0: Mis-match in alignment, A or T in reference sequence
1: Mis-match in alignment, G or C in reference sequence
2: Match in alignment, A or T in reference sequence
3: Match in alignment, G or C in reference sequence

The author is currently investigating using this technique, 
as well as other more sophisticated approaches, to perform 
segmentation based on multiple data types. Preliminary results 
indicate that the groups observed using pairwise alignments 
alone can be resolved into numerous sub-groups by including 
GC content in the analysis.

 3. Alignments are also available for other parts of the D. melano-
gaster genome. There are alignments for chromosome 4, for 
heterochromatic parts of chromosomes 2, 3, 4, and X, for 
the heterochromatic Y chromosome, for the mitochondrial 
chromosome and for unplaced reads (chrU). Most of these 
were omitted from the analyses because they are enriched 
in poor quality alignments. The mitochondrial chromosome 
was omitted because its distribution of conservation levels 
is expected to be quite different from the nuclear chromo-
somes, and thus should be treated in a separate analysis.

Parts of the D. melanogaster genome that were aligned 
to atypical parts of the D. simulans genome (e.g., unplaced 
reads) were included in the analyses described here. These 
constitute such a small part of the total that they are unlikely 
to have a noticeable influence on the results. Nevertheless, it is 
also possible to eliminate such sequences.

 4. Another useful way to assess convergence is to plot time-series
for two parameters of interest simultaneously as an X-Y plot. 
For example, one can plot the means of the beta distributions
versus the mixture proportions for each group. Such plots 
show clearly the trends during burn-in and the random-walk 
that occurs after burn-in.
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 5. It is standard practice among Bayesian practitioners to use all 
of the available segmentations produced by MCMC when esti-
mating an average. No bias is introduced by using dependent 
samples, although the effective sample size is reduced. Moreover, 
it is an inefficient use of disk space to store segmentations that 
are not processed. Thus it is generally preferable to use the 
default value of “-s 0” in readcp. The effective sample size can 
be increased by specifying a large sampling block size using 
the –s switch in changept. In the absence of information about 
the sampling block size needed to achieve effective independ-
ence, a size one-tenth the length of the input sequence, or 
alternatively about 10 times the number of change-points, is 
recommended for binary sequences.
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funded by Australian Research Council (ARC) Discovery Grants 
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Chapter 12

Discovering Sequence Motifs

Timothy L. Bailey

Abstract

Sequence motif discovery algorithms are an important part of the computational biologist’s toolkit. 
The purpose of motif discovery is to discover patterns in biopolymer (nucleotide or protein) sequences 
in order to better understand the structure and function of the molecules the sequences represent. This 
chapter provides an overview of the use of sequence motif discovery in biology and a general guide to 
the use of motif discovery algorithms. The chapter discusses the types of biological features that DNA 
and protein motifs can represent and their usefulness. It also defines what sequence motifs are, how they 
are represented, and general techniques for discovering them. The primary focus is on one aspect of 
motif discovery: discovering motifs in a set of unaligned DNA or protein sequences. Also presented are 
steps useful for checking the biological validity and investigating the function of sequence motifs using 
methods such as motif scanning—searching for matches to motifs in a given sequence or a database of 
sequences. A discussion of some limitations of motif discovery concludes the chapter.

Key words: Motif discovery, sequence motif, sequence pattern, protein domain, multiple align-
ment, position-specific scoring matrix, PSSM, position-specific weight matrix, PWM, transcription 
factor binding site, transcription factor, promoter, protein features.

Biological sequence motifs are short, usually fixed-length, sequence 
patterns. Many features of DNA, RNA, and protein molecules can 
be well approximated by motifs. For example, sequence motifs 
can represent transcription factor binding sites (TFBSs), splice 
junctions, and binding domains in DNA, RNA, and protein mol-
ecules, respectively. Consequently, discovering sequence motifs 
can lead to a better understanding of transcriptional regulation, 
mRNA splicing and the formation of protein complexes.
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Regulatory elements in DNA are among the most important 
biological features that are represented by sequence motifs. The 
DNA footprint of the binding sites for a transcription factor (TF) is 
often well described by a sequence motif. These TFBS motifs specify 
the order and nucleotide preference at each position in the binding 
sites for a particular TF. Discovering TFBS motifs and relating them 
to the TFs that bind to them is a key challenge in constructing a 
model of the regulatory network of the cell (1, 2). Motif discovery 
algorithms have been used to identify many candidate TFBS motifs 
that were later validated by experimental methods.

Protein motifs can represent, among other things, the active 
sites of enzymes. They can also identify protein regions involved 
in determining protein structure and stability. The PROSITE, 
BLOCKS, and PRINTS databases (3–5) contain hundreds of 
protein motifs corresponding to enzyme active sites, binding 
sites, and protein family signatures. Motifs can also be used to 
identify features that confer particular chemical characteristics 
(e.g., thermal stability) on proteins (6). Protein sequence motifs 
can also be used to classify proteins into families (5).

The importance of motif discovery is born out by the growth in 
motif databases such as TRANSFAC, JASPAR, SCPD, DBTBS, and 
RegulonDB (7–11) for DNA motifs and PROSITE, BLOCKS, and 
PRINTS (3–5) for protein motifs. However, far more motifs remain 
to be discovered. For example, TFBS motifs are known for only about 
500 vertebrate transcription factors TFs, but it is estimated that there 
are about 2,000 TFs in mammalian genomes alone (6, 12).

Fixed-length motifs cannot represent all interesting patterns 
in biopolymer sequences. For instance, they are obviously not 
ideal for representing variable-length protein domains. For rep-
resenting long, variable-length patterns, profiles (13) or HMMs 
(14, 15) are more appropriate. However, the dividing line between 
motifs and other sequence patterns (e.g., HMMs and profiles) is 
fuzzy, and is often erased completely in the literature. Some of 
the motif discovery algorithms discussed in the following sec-
tions, for example, do allow a single, variable-length “spacer,” 
thus violating (slightly) our definition of motifs as being of fixed 
length. However, this chapter does not consider patterns that 
allow free insertions and deletions, even though these are some-
times referred to as motifs in the literature.

Biological sequence motifs are usually represented either as 
regular expressions (REs) or position weight matrices (PWMs). 
These two ways of describing motifs have different strengths and 
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weaknesses when it comes to expressive power, ease of discovery, 
and usefulness for scanning. Motif discovery algorithms exist that 
output their results in each of these types of motif representation. 
Some motif discovery algorithms do not output a description of 
the motif at all, but, rather, output a list of the “sites” (occur-
rences) of the motif in the input sequences. Any set of sites can 
easily be converted to a regular expression or to a PWM.

Regular expressions are a way to describe a sequence pat-
tern by defining exactly what sequences of letters constitute a 
match. The simplest regular expression is just a string of letters. 
For example, “T-A-T-A-A-T” is a DNA regular expression that 
matches only one sequence: “TATAAT”. (This chapter follows 
the PROSITE convention of separating the positions in an RE 
by a hyphen (“-”) to distinguish them from sequences.) To allow 
more than one sequence to match an RE, extra letters (ambigu-
ity codes) are added to the four-letter DNA sequence alphabet. 
For example, the IUPAC (16) code defines “W = A or T”, so the 
RE “T-A-T-A-W-T” matches both “TATATT” and “TATAAT”. 
For the 20-letter protein alphabet, ambiguity codes would be 
unwieldy, so sets of letters (enclosed in square brackets) may be 
included in an RE. Any of the letters within the square brackets 
is considered a match. As an added convenience, PROSITE pro-
tein motif REs allow a list of letters in curly braces, and any letter 
except the enclosed letters matches at that position. For example, 
the PROSITE N-glycosylation site motif is “N-{P}-[ST]-{P}”. 
This RE matches any sequence starting with “N”, followed by 
anything but “P”, followed by an “S” or a “T”, ending with any-
thing but “P”. As noted, some motif discovery programs allow 
for a variable-length spacer separating the two, fixed-length ends 
of the motif. This is particularly applicable to dyad motifs in DNA 
(17, 18). The RE “T-A-C-N(2,4)-G-T-A” describes such a motif, 
in which “N” is the IUPAC “match anything” ambiguity code. 
The entry “-N(2,4)-” in the RE matches any DNA sequence of 
length from two to four, so sequences matching this RE have 
lengths from eight to ten, and begin and end with “TAC” and 
“GTA”, respectively.

Whereas REs define the set of letters that may match at 
each position in the motif, PWMs define the probability of each 
letter in the alphabet occurring at that position. A PWM is an 
n by w matrix, where n is the number of letters in the sequence 
alphabet (four for DNA, 20 for protein), and w is the number 
of positions in the motif. The entry in row a, column i in the 
PWM, designated Pa,i, is the probability of letter a occurring 
at position i in the motif. Mathematically, PWMs specify the 
parameters of a position-specific multinomial sequence model 
that assumes each position in the motif is statistically independ-
ent of the others. A PWM defines a probability for every possible 
sequence of the correct width (w). The positional independence 
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assumption implies that the probability of a sequence is just the 
product of the corresponding entries in the PWM. For exam-
ple, the probability of the sequence “TATAAT” according to a 
PWM (with six columns) is:

Pr P P P P P P( TATAAT ) = .T,1 A,2 T,3 A,4 A,5 T,6“ ” ⋅ ⋅ ⋅ ⋅ ⋅

As with REs, it is possible to extend the concept of PWMs to 
allow for variable-length spacers, but this is not commonly done 
by existing motif discovery algorithms.

For the purposes of motif scanning, many motif discovery 
algorithms also output a position-specific scoring matrix (PSSM), 
which is often confusingly referred to as a PWM. The entries in a 
PSSM are usually defined as:

S
P

fa j
a j

a
,

,log ,= 2 [1]

where fa is the overall probability of letter a in the sequences to 
be scanned for occurrences of the motif. The PSSM score for 
a sequence is given by summing the appropriate entries in the 
PSSM, so the PSSM score of the sequence “TATAAT” is:

S(“TATAAT”)=ST,1 +SA,2 +ST,3 +SA,4 +SA,5 +ST,6.

PSSM scores are more sensitive for scanning than probabilities 
because they take the “background” probability of different let-
ters into account. This increases the match score for uncommon 
letters and decreases the score for common letters, thus reducing 
the rate of false-positives caused by non-uniform distribution of 
letters in sequences.

Underlying both REs and PWMs are the actual occur-
rences (sites) of the motif in the input sequences. The relation-
ship among the motif sites, an RE and a PWM is illustrated in 
Fig. 12.1, which shows the JASPAR “broad-complex 1” motif. 
The nine motif sites from which this motif was constructed are 
shown aligned with each other at the top of the figure. The cor-
responding RE motif (using the IUPAC DNA ambiguity codes) 
is shown beneath the alignment. Below that, the counts of each 
letter in the corresponding alignment columns are shown. Below 
those, the corresponding PWM entries are shown. They were 
computed by normalizing each column in the counts matrix so 
that it sums to one. Beneath the PWM, the “LOGO” repre-
sentation (19) for the motif is shown, where the height of each 
letter corresponds to its contribution to the motif ’s information 
content (2).

Any alignment of motif sites can be converted into either 
an RE or PWM motif in the manner illustrated in Fig. 12.1.
Usually a small amount (called a “pseudocount”) is added to the 
counts in the position-specific count matrix before the PWM is 
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created by normalization in order to avoid probabilities of zero 
being assigned to letters that were not observed. This is sensible 
because, based on only a fraction of the actual sites, one cannot 
be certain that a particular letter never occurs in a real site.

Both PWMs and regular expressions are used by motif dis-
covery algorithms because each has advantages. The main advan-
tages of regular expressions are that they are easy for humans to 
visualize and for computers to search for. It is also easier to 
compute the statistical significance of a motif defined as a regular 
expression (17, 20). On the other hand, PWMs allow for a more 

Aligned Sites
site1 C T A A T T G G C A A A T G
site2 A T A A T A A A C A A A A C
site3 G A C A T A G A C A A G A C
site4 G T C T T T C A C A A A T A
site5 G T G A A A G A C A A G T T
site6 A T A A T A A A C A A A A T
site7 G T T G A A A A C A A T A G
site8 T C A A A T A T C A A A T C
site9 A G A A T A G A A A G G T A

Regular Expression (RE)
N -- N -- N -- D -- W -- W -- V -- D -- M -- A -- R -- D -- W -- N

Position-specific Count Matrix (PSCM)
A [ 3 1 5 7 3 6 4 7 1 9 8 5 4 2 ]
C [ 1 1 2 0 0 0 1 0 8 0 0 0 0 3 ]
G [ 4 1 1 1 0 0 4 1 0 0 1 3 0 2 ]
T [ 1 6 1 1 6 3 0 1 0 0 0 1 5 2 ]

Position-specific Weight Matrix (PWM)
A [ 0.33 0.11 0.56 0.78 0.33 0.67 0.44 0.78 0.11 1.00 0.89 0.56 0.44 0.22 ]
C [ 0.11 0.11 0.22 0.00 0.00 0.00 0.11 0.00 0.89 0.00 0.00 0.00 0.00 0.33 ]
G [ 0.44 0.11 0.11 0.11 0.00 0.00 0.44 0.11 0.00 0.00 0.11 0.33 0.00 0.22 ]
T [ 0.11 0.67 0.11 0.11 0.67 0.33 0.00 0.11 0.00 0.00 0.00 0.11 0.56 0.22 ]
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Fig. 12.1. Converting an alignment of sites into an RE and a PWM. The alignment of DNA 
sites is shown at the top. The RE (using the IUPAC ambiguity codes) is shown aligned 
below the sites. The corresponding counts of each letter in each alignment column—the 
position-specific count matrix (PSCM)—are shown in the next box. The PWM is shown 
below that. The last box shows the information content “LOGO” for the motif.
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nuanced description of motifs than regular expressions, because 
each letter can “match” a particular motif position to varying 
degrees, rather than simply matching or not matching. This 
makes PWM motifs (converted to PSSMs using [1]) more suit-
able for motif scanning than REs in most applications. When 
used to model binding sites in nucleotide molecules, there is 
evidence that PWMs capture some of the statistical mechanics 
of protein-nucleotide binding (21–23). An extension of PWMs, 
called hidden Markov models (HMMs), has also been shown 
to be an invaluable way to represent protein domains (e.g., the 
PFAM database of protein domains) (24). The main disadvan-
tage of PWMs for motif discovery is that they are far more diffi-
cult for computer algorithms to search for. This is true precisely 
because PWMs are so much more expressive than REs.

Many approaches have been tried for de novo motif discovery. 
In general, they fall into four broad classes. The predominant 
approach can be called the “focused” approach: assemble a small 
set of sequences and search for over-represented patterns in the 
sequences relative to a background model. Numerous exam-
ples of available algorithms that use this approach are given 
in Table 12.3. A related approach can be called the “focused 
discriminative” approach: Assemble two sets of sequences and 
look for patterns relatively over-represented in one of the input 
sets (25, 26). The “phylogenetic” approach uses sequence con-
servation information about the sequences in a single input set 
(27–30). The “whole-genome” approach looks for over-represented, 
conserved patterns in multiple alignments of the genomes of 
two or more species (31, 32). This chapter does not describe the 
“whole-genome” approach in any detail.

A sequence motif describes a pattern that recurs in biopoly-
mer sequences. To be interesting to biologists, the pattern should 
correspond to some functional or structural feature that the 
underlying molecules have in common. None of the computa-
tional techniques for motif discovery listed in the preceding can 
guarantee to find only biologically relevant motifs. The most that 
can generally be said about a computationally discovered motif 
is that it is statistically significant, given underlying assumptions 
about the sequences in which it occurs.

The predominant approach to sequence motif discovery is 
the focused approach, which searches for novel motifs in a set 
of unaligned DNA or protein sequences suspected to contain a 
common motif. The next section discusses how the sequences 
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can be selected. RE-based motif discovery algorithms for the 
focused approach search the space of all possible regular expres-
sions either exhaustively or heuristically (incompletely). Their 
objective is usually to identify the REs whose matches are most 
over-represented in the input sequences (relative to a background 
sequence model, randomly generated background sequences, or 
a set of negative control sequences). PWM-based motif discovery 
algorithms search the space of PWMs for motifs that maximize 
an objective function that is usually equal to (or related to) log 
likelihood ratio (LLR) of the PWM:

LLR PWM P
P

fa j
a Aj

w
a j

a

( ) log ,,
,=

∈=
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1
2 [2]

where the Pa,j are estimated from the predicted motif sites as 
illustrated in Fig. 12.1. The appropriateness of this objective 
function is justified by both Bayesian decision theory (33),
and, in the case of TFBSs, by binding energy considerations 
(21, 23). When the background frequency model is uniform, 
LLR is equivalent to “information content”.

This section describes the steps necessary for successfully 
discovering motifs using the “focused” approach. Each motif 
discovery  application is different, but most have the following 
steps in common:
 1. Assemble: Select the target sequences.
 2. Clean: Mask or remove “noise.”
 3. Discover: Run a motif discovery algorithm.
 4. Evaluate: Investigate the validity and function of the motifs.
In the first step, you assemble a “dataset” of DNA or protein 
sequences that you believe may contain an unknown motif encoding 
functional, structural, or evolutionary information. Next, if appro-
priate, you mask or remove confounding sequence regions such as 
low-complexity regions and known repeat elements. You then run 
a motif discovery algorithm using your set of sequences and with 
parameter settings appropriate to your application. The next step 
is intended to weed out motifs that are likely to be chance artefacts 
rather than motifs corresponding to functional or structural features, 
and to try to glean more information about them. This step can 
involve determining if a discovered motif is similar to a known motif, 
or if its occurrences are conserved in orthologous genes. Each of 
these steps is described in more detail in the following sections.
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The most important step in motif discovery is to assemble a set 
of sequences that is likely to contain multiple occurrences of one 
or more motifs (see Note 2). For motif discovery algorithms to 
successfully discover motifs, it is important that the sequence 
set be as “enriched” as possible in the motifs. Obviously, if the 
sequences consist entirely of motif occurrences for a single motif, 
the problem of motif discovery is trivial (see Fig. 12.1). In practice, 
the guiding idea behind assembling a sequence set is to come as 
close as possible to such a set. To achieve this, all available back-
ground knowledge should be applied in order to:

● Include as many sequences as possible that contain the motifs.
● Keep the sequences as short as possible.
● Remove sequences that are unlikely to contain any motifs.

How you assemble your input sequence set depends, of course, 
on what type of motifs you are looking for and where you expect 
them to occur. In most applications, there are two basic steps:
 1. Clustering
 2. Extraction
First, you cluster genes (or other types of sequences) based on 
information about co-expression, co-binding, function, environ-
ment, or orthology to select ones likely to have a common motif. 
Second, you extract the relevant (portions of) sequences from an 
appropriate sequence database.

As an example, to discover regulatory elements in DNA, you 
might select upstream regions of genes that show co-expression in 
a microarray experiment (34). Co-expression can be determined 
by clustering of expression profiles. Alternatively, you could use 
the sequences that bound to a TF in a ChIP-chip experiment 
(1, 35). A third possibility is to use information on co-expressed 
promoters from CAGE tag experiments (36, 37). To these sequence
sets you might also add orthologous sequences from related 
organisms, the assumption being that the regulatory elements 
have been conserved in them.

To discover protein functional or structural sequence motifs, 
you could select proteins belonging to a given protein family based 
on sequence similarity, structure, annotation, or other means (24,
38, 39). You might further refine the selection to only include 
proteins from organisms with a particular feature, such as the ability 
to live in extreme environments (40). Another protein motif dis-
covery application uses information from protein–protein inter-
action experiments. You can assemble a set of proteins that bind 
to a common host protein, in order to discover sequence motifs 
for the interacting domains.

Most algorithms require sets of sequences in FASTA format.
Proteins are usually easily extracted directly from the available 
sequence databases. Genomic DNA is more problematic, since 
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annotation of genes, promoters, transcriptional start sites, introns, 
exons, and other important features is not always reliable. 
Several web servers available to aid you in extracting the relevant 
sequences for discovering regulatory elements in genomic DNA 
are shown in Table 12.1.

Many genomic “phenomena” can masquerade as motifs and 
fool motif discovery algorithms (see Note 3). Things such as 
low-complexity DNA, low-complexity protein regions, tandem 
repeats, SINES, and ALUs all contain repetitive patterns that are 
problematic for existing motif-finding algorithms. It is therefore 
advisable to filter out these features from the sequences in the 
input set. This is done by running one or more of the programs 
described in Table 12.2 on your set of sequences. Typically, 
the programs replace regions containing genomic “noise” with 
the ambiguity code for “match anything” in the appropriate 
sequence alphabet. This usually means “N” for DNA sequences 
and “X” for protein. Most motif discovery algorithms will 
not find motifs containing large numbers of these ambiguity 
codes, so they are effectively made invisible by this replacement 
process.

Table 12.2 lists some of the programs available to help you 
mask or remove confounding regions from your input sequence 
set. The DUST program (41) can be used to filter out 
low-complexity DNA. The XNU program (42) filters low-
complexity (short period repeat) amino acid sequences. An 
alternative  program for filtering out low-complexity protein 
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Table 12.1
Web servers for extracting upstream regions and other 
types of genomic sequence

Web server name Function

RSA tools Retrieve upstream regions for a large number 
of organisms.

http://rsat.ulb.ac.be/rsat/

PromoSer Retrieve human, rat, and mouse upstream regions, 
including alternative promoters.

http://biowulf.bu.edu/zlab/PromoSer

UCSC genome 
browser (74)

View and extract genomic sequences and 
alignments of multiple genomes.

http://genome.ucsc.edu
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sequences is the SEG program (43). Interspersed DNA repeats 
and low-complexity DNA sequence can both be filtered using 
the RepeatMasker program (44). A web server is available for 
RepeatMasker, whereas at the time of this writing it was necessary 
to download, compile, and install the DUST, XNU, and SEG 
programs on your own computer. Tandem repeats can be identi-
fied in DNA using the “Tandem Repeats Finder” program. It 
has a web server that allows you to upload your sequence set (in 
FASTA format) for analysis. Of course, you should be aware that 
functional motifs can sometimes occur in the types of regions 
filtered by these programs, so caution is advised. It is important 
to study the documentation available with the programs to be 
sure you know what types of sequence they mask or identify. If 
you suspect that they may be masking regions containing your 
motifs of interest, you can always try running motif discovery 
algorithms on both the original and cleaned sets of sequences, 
and compare the results.

Many motif discovery algorithms are currently available. Most 
require installation of software on your computer. Table 12.3
lists a variety of algorithms that have web servers in which you can 
upload your sequences directly, thus avoiding the need to install 
any new software. The table groups the algorithms according to 
whether they search for motifs expressed as REs or PWMs. Some 
of the algorithms are general purpose and can discover motifs in 
either DNA or protein sequences (MEME (45) and Gibbs (46)).

4.3. Discover: Run 
a Motif Discovery 
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Table 12.2
Programs for filtering “noise” in DNA and protein 
sequences

Program name Function

DUST Filter low-complexity DNA.
http://blast.wustl.edu/pub/dust

XNU Filter low-complexity protein.
http://blast.wustl.edu/pub/xnu

SEG Filter low-complexity protein.
http://blast.wustl.edu/pub/seg

RepeatMasker Filter interspersed DNA repeats and low-complexity 
sequence.

http://www.repeatmasker.org/cgi-bin/WEBRe-
peatMasker

Tandem Repeats 
Finder

Identify the positions of DNA tandem repeats.
http://tandem.bu.edu/trf/trf.html
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Table 12.3

Some motif discovery algorithms with web servers

PWM-Based algorithms

MEME DNA or protein motifs using EM.
http://meme.nbcr.net

Gibbs DNA or protein motifs using Gibbs sampling.
http://bayesweb.wadsworth.org/gibbs/gibbs.html

AlignACE DNA motifs using Gibbs sampling.
http://atlas.med.harvard.edu

CompareProspector DNA motifs in eukaryotes using “biased” Gibbs sampling; requires 
multiple alignment.

http://seqmotifs.stanford.edu

BioProspector DNA motifs in prokaryotes and lower eukaryotes using Gibbs sampling.
http://seqmotifs.stanford.edu

MDscan DNA motifs; specialized for ChIP-chip probes.
http://seqmotifs.stanford.edu

RE-Based algorithms

BlockMaker Protein motifs.
http://blocks.fhcrc.org/blocks/make_blocks.html

RSA tools DNA motifs using RE-based or Gibbs sampler-based algorithms
http://rsat.ulb.ac.be/rsat/

Weeder DNA motifs using RE-based algorithm.
http://www.pesolelab.it

YMF DNA motifs using RE-based algorithm.
http://wingless.cs.washington.edu/YMF

Combination algorithms

TAMO Yeast, mouse, human; input as gene names or probe names, fetches 
upstream regions for you.

http://fraenkel.mit.edu/webtamo

Some algorithms are specialized only for DNA (AlignACE (47),
BioProspector (30), MDscan (48), RSA Tools (17, 49), Weeder 
(50), and YMF (51)). CompareProspector (52) is specialized 
for DNA sequences and requires that you input your sequence 
set and conservation levels for each sequence position derived 
from a multiple alignment. BlockMaker (53) finds motifs only 
in protein sequences. The TAMO algorithm (54) runs multiple 
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motif discovery algorithms (MEME, AlignACE, and MDscan) 
and combines the results.

Many excellent algorithms are not included in Table 12.3
because they did not appear to have a (working) web server 
at the time of this writing. Motif discovery algorithms require 
a great deal of computational power, so most authors have 
elected to distribute their algorithms rather than provide a web 
server. Other motif discovery algorithms include ANN-Spec 
(26), Consensus (55), GLAM (56), Improbizer (57), MITRA 
(58), MotifSampler (59), Phyme (27), QuickScore (60), and 
SeSiMCMC (61).

Different classes of algorithms (RE- and PWM-based) have 
different strengths and weaknesses, so it is often helpful to run 
one or more motif discovery algorithms of each type on your 
sequence set. Doing this can increase the chances of finding sub-
tle motifs. Also, the confidence in a given motif is increased when 
it is found by multiple algorithms, especially if the algorithms 
belong to different classes (see Note 4).

Some motif discovery algorithms (e.g., CompareProspector) 
can take direct advantage of conservation information in multi-
ple alignments of orthologous sequence regions. This has been 
shown to improve the detection of TFBSs because they tend to 
be over-represented in sequence regions of high conservation 
(62, 63). To find subtle motifs, it can also be useful to run each 
motif discovery algorithm with various settings of the relevant 
parameters. What the relevant parameters are depends on the 
particular problem at hand and the motif discovery algorithm 
you are using. You should read the documentation for the algo-
rithm you are using for hints about what non-default parameter 
settings may be appropriate for different applications. In general, 
important parameters to vary include the limits on the width of 
the motif, the model used to model background (or “negative” 
sequences), the number of sites expected (or required) in each 
sequence, and the number of motifs to be reported (if the algo-
rithm can detect multiple motifs).

One of the most difficult tasks in motif discovery is deciding which, 
if any, of the discovered motifs is “real.” Three  complementary 
approaches can aid you in this. First, you can attempt to deter-
mine whether a given motif is statistically significant. Second,
you can investigate whether the function of the motif is already 
known or can be inferred. Third, you can look for  corroborating 
evidence for the motif. Each of these approaches is discussed in 
the following.

Most motif discovery algorithms report motifs regardless of 
whether they are likely to be statistical artefacts. In other words, 
they “discover” motifs even in randomly generated (or randomly 
selected) sequences. This is sometimes referred to as the “GIGO” 
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rule: garbage-in, garbage-out. This, however, is not necessarily a 
bad thing; many truly functional DNA motifs are not statistically 
significant in the context of the kinds of sequence sets that can be 
assembled using clustered data from co-expression, ChIP-chip, 
CAGE, or other current technologies. So, it is important that 
motif discovery algorithms be able to detect these types of motifs 
even if they lie beneath the level of statistical significance that 
we might like. Measures of the statistical significance of a motif 
above the 0.05 significance level are still useful because they can 
be used to prioritize motifs for further validation.

Some motif discovery algorithms report an estimate of the sta-
tistical significance of the motifs they report. For example, MEME 
(45), Consensus (55), and GLAM (56) report the E-value of the 
motif: the probability of a motif of equal or greater information 
content occurring in a sequence set consisting of shuffled 
versions of each sequence. Motifs with very small (<0.05) E-values
are statistically significant according to the given definition of 
random (shuffled sequences). The reported E-values are known 
to be conservative (too large), so motifs with E-values <0.05 may 
still be significant. Gibbs (46) uses a different statistical test 
(Wilcoxon signed-rank test) to determine motif significance. The 
relative merits of these two methods of assessing motif signifi-
cance have not been studied.

Sometimes it is advisable to estimate motif significance 
empirically (64). Many motif discovery algorithms do not make 
any attempt to report the statistical significance of the motifs they 
discover relative to the number of possible motifs that might have 
appeared in a randomly selected or generated sequence-set, so 
empirical estimation is the only available approach. Another rea-
son to evaluate the significance of motifs empirically is that the 
motif significance estimates given by algorithms such as those 
named in the previous paragraph tend to be conservative, caus-
ing some biologically significant motifs to appear to be artefacts 
(see Note 5).

Empirical significance testing is very computationally 
expensive and therefore should generally be done using motif 
discovery algorithms installed on your local computer. Empiri-
cal significance testing is done by running the motif discovery 
algorithm hundreds of times on random sets of sequences of the 
same type and length, and with the same input parameters to 
the program, as were used in finding the motifs you are inter-
ested in evaluating. The motif scores for all the motifs found in 
the random runs are plotted as a histogram—the empirical score 
distribution. The significance of your real motifs’ scores can be 
estimated by seeing where they lie on the histogram. The motif 
score can be either the information content score or the objec-
tive function score of the particular motif discovery method—
usually some measure of over-representation. How you select (or 
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generate) the random sequence sets depends on your applica-
tion. For example, if your real sequences are selected upstream 
regions of genes from a single organism, a reasonable random 
model would be to use randomly chosen upstream regions from 
the same organism.

Whether or not you choose to determine their statistical 
significance, you will probably want to determine as much as 
possible about the function of your motifs (see Note 6). To do 
this, you can use your motifs to search databases of motifs and 
motif families, and you can use your motifs individually and in 
groups to search databases of sequences for single matches and 
local clusters of matches. DNA motifs can be searched against 
known vertebrate TF motifs in JASPAR. The JASPAR database 
also contains motifs that represent the binding affinities of whole 
families of TFs. If your motif matches one of these family motifs, 
it may be the TFBS motif of a TF in that structural family. You 
can search your protein motif against the BLOCKS or PRINTS 
(5) database using the LAMA program (65) to identify if it 
corresponds to a known functional domain. These databases are 
summarized in Table 12.4.

You will also want to see if your motif occurs in sequences 
other than those in the sequence set in which it was discovered. 
This is done by scanning a database of sequences using your 
motif (or motifs) as the query. This can help validate the motif(s) 
and shed light on its (their) function. If the novel occurrences 
have a positional bias relative to some sequence landmark (e.g., 
the transcriptional start site), then this can be corroborating 
evidence that the motif may be functional (47). In bacteria, 
real TFBSs are more likely to occur relatively close to the gene 
for their TF, so proximity to the TF can increase confidence 
in TFBSs predicted by motif scanning (2). Similarly, when the 
occurrences of two or more motifs cluster together in several 
sequences, it may be evidence that the motifs are functionally 

Table 12.4
Some searchable motif databases with web servers

Database Description

JASPAR Searchable database of vertebrate TF motifs 
and TF-family motifs. http://jaspar.generge.net/

BLOCKS
PRINTS

Databases of protein signatures.
http://blocks.fhcrc.org/blocks-bin/LAMA_search.sh
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related. (Care must be taken that the clustering of co-occur-
rences is not simply due to sequence homology.) The func-
tions of the sequences in which novel motif occurrences are 
detected can also provide a hint to the motif ’s function. Scan-
ning with multiple motifs can shed light on the interaction/
co-occurrence of protein domains and on cis-regulatory modules
(CRMs) in DNA.

Numerous programs are available to assist you in determin-
ing the location, co-occurrence and correlation with functional 
annotation of your motifs in other sequences. The MAST pro-
gram (66) allows you to search a selection of sequence data-
bases with one or more unordered protein or DNA motifs. The 
PATSER program (55) allows you to search sequences that you 
upload for occurrences of your DNA motif. Several tools are 
available for searching for cis-regulatory modules that include 
your TFBS motifs. They include MCAST (67), Comet (68) and 
Cluster-buster (69). To determine if the genomic positions of 
the matches to your motif or motifs are correlated with func-
tional annotation in the GO (Genome Ontology) database 
(70), you can use GONOME (71). If the genomic positions are 
strongly correlated with a particular type of gene, this can shed 
light on the function of your motif. Some tools for motif scan-
ning that are available for direct use via web servers are listed in 
Table 12.5.

Table 12.5
Some web servers for scanning sequences for occurrences
of motifs

Program Description

MAST Search one or more motifs against a sequence 
database; provides a large number of sequence 
databases or allows you to upload 
a set of sequences.

http://meme.nbcr.net

PATSER Search a motif against sequences you upload.
http://rsat.ulb.ac.be/rsat/patser_form.cgi

Comet, Clusterbuster Search for cis-regulatory modules.
http://zlab.bu.edu/zlab/gene.shtml

GONOME Find correlations between occurrences of your 
motif and genome annotation in the GO 
database.

http://gonome.imb.uq.edu.au/index.html
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An important way to validate DNA motifs is to look at 
the conservation of the motif occurrences in both the original 
sequences and in sequences you scan as described in the previous 
paragraph. It has been shown that TFBSs exhibit higher conser-
vation than the surrounding sequence in both yeast and mam-
mals (31, 32). Motifs whose sites (as determined by the motif 
discovery algorithm) and occurrences (as determined by scan-
ning) show preferential conservation are less likely to be statistical 
artefacts. Databases such as the UCSC genome browser (see
Table 12.1) can be consulted to determine the conservation of 
motif sites and occurrences.

Awareness of the limitations of motif discovery can guide you to 
more success in the use of the approaches outlined in this chap-
ter. Some limitations have to do with the difficulty of discover-
ing weak motifs in the face of noise. Spurious motifs are another 
source of difficulty. Another limitation is caused by the difficulty 
in determining which sequences to include in the input sequence 
set (see Note 1).

You can often think of motif discovery as a “needle-in-
a-haystack” problem where the motif is the “needle” and the 
sequences in which it is embedded is the “haystack.” Because motif
discovery algorithms depend on the relative over-representation 
of a motif in the input set of sequences, a motif is “weak” if it is 
not significantly over-represented in the input sequences relative 
to what is expected by chance (or relative to a negative set of 
sequences) (72).

Over-representation is a function of several factors, including:
● The number of occurrences of the motif in the sequences
● How similar all the occurrences are to each other
● The length of the input sequences

The more occurrences of the motif the sequences contain, the 
easier they will be to discover. Therefore, adding sequences to 
the input set that have a high probability of containing a motif 
will increase the likelihood of discovering it. Conversely, it can 
be helpful to reduce the number of sequences by removing ones 
unlikely to contain motif occurrences. Many DNA motifs (e.g., 
TFBSs) tend to have low levels of similarity among occurrences, 
so it is especially important to limit sequence length and the 
number of “noise” sequences (ones not containing occurrences) 
in the input sequence set. Over-representation depends inversely 
on the length of the sequences, so it is always good to limit the 

5. Limitations of 
Motif Discovery
5. Limitations of 
Motif Discovery
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length of the input sequences as much as possible. Current motif 
discovery algorithms perform poorly at discovering TFBS when 
the sequences are longer than 1,000 bp.

Spurious motifs are motifs caused by non-functional, repeti-
tive elements such as SINES, ALUs, and by skewed sequence 
composition in regions such as CpG islands. Such regions will 
contain patterns that are easily detected by motif discovery algo-
rithms and may obscure real motifs. To help avoid this, you can 
pre-filter the sequences using the methods described in Section
4.2. In some cases, pre-filtering is not an option because the 
motifs of interest may lie in the regions that would be removed 
by filtering. For example, DNA regulatory elements often occur 
in or near CpG islands. In such cases, manual inspection using the 
methods of the previous section is necessary to remove spurious 
motifs. Using an organism-specific (or genomic-region–specific) 
random model is possible with some motif discovery algorithms, 
and may help to reduce the number of spurious motifs.

It is also important to be aware of the reliability of the method-
ologies used in selecting the input sequences for motif discovery. 
For example, sequences selected based on microarray expression 
data may miss many TFs because their level of expression is too 
low for modern methods to detect reliably (2). ChIP-on-chip has 
become a popular procedure for studying genome-wide protein-
DNA interactions and transcriptional regulation, but it can only 
map the probable protein-DNA interaction loci within 1-2Kbp 
resolution. Even if the input sequences all contain a TFBS motif, 
many TFBS motifs will not be detected in such long sequences 
using current motif discovery algorithms (73). Another diffi-
culty in discovering regulatory elements in DNA is that they can 
lie very far from the genes they regulate in eukaryotes, making 
sequence selection difficulty.

 1. Be aware of the limitations of the motif discovery algorithms 
you use. For example, do not input an entire genome to 
most motif discovery algorithms—they are not designed for 
that and will just waste a lot of computer time without find-
ing anything.

 2. Use all available background information to select the 
sequences in which you will discover motifs. Include as 
many sequences as possible that contain the motifs. Keep 
the sequences as short as possible. Remove sequences that 
are unlikely to contain any motifs.

6. Notes6. Notes
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 3. Prepare the input sequences carefully by masking or remov-
ing repetitive features that are not of interest to you such 
as ALUs, sines, and low-complexity regions. Filtering pro-
grams such as DUST, XNU, SEG, and RepeatMasker can 
help you do this.

 4. Try more than one motif discovery algorithm on your data. 
They have different strengths and one program will often 
detect a motif missed by other programs.

 5. Evaluate the statistical significance of your motifs. Remem-
ber that most motif discovery algorithms report motifs in 
any dataset, even though they may not be statistically signifi-
cant. Even if the algorithm estimates the significance of the 
motifs it finds, these estimates tend to be very conservative, 
making it easy to reject biologically important motifs. So 
you should re-run the motif discovery algorithm on many 
sets of sequences that you select to be similar to your “real” 
sequences, but that you do not expect to be enriched in any 
particular motif. Compare the scores of your “real” motifs 
with those of motifs found in the “random” sequences to 
determine if they are statistically unusual.

 6. Compare the motifs you discover to known motifs contained 
in appropriate motif databases such as those in Table 12.4.
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Chapter 13

Modeling Sequence Evolution

Pietro Liò and Martin Bishop

Abstract

DNA and amino acid sequences contain information about both the phylogenetic relationships among 
species and the evolutionary processes that caused the sequences to divergence. Mathematical and statistical
methods try to detect this information to determine how and why DNA and protein molecules work 
the way they do. This chapter describes some of the models of evolution of biological sequences most 
widely used. It first focuses on single nucleotide/amino acid replacement rate models. Then it discusses 
the modelling of evolution at gene and protein module levels. The chapter concludes with speculations 
about the future use of molecular evolution studies using genomic and proteomic data.

Key words: Models of evolution, DNA mutations, amino acid substitution, Markov property, 
human genome evolution, ALU.

Molecular evolutionary studies offer an effective method for 
using genomic information to investigate many biomedical 
phenomena. DNA and amino acid sequences may contain both 
information about the phylogenetic relationships between species
and information about the evolutionary processes that have 
caused the sequences to diverge. The analysis of phylogenetic 
relationships enables us to recognize and even exploit the statistical 
dependencies among sequence data that are due to common 
ancestry. The study of phylogenetic relationships among spe-
cies has moved from being a mainly descriptive and speculative 
discipline to being a valuable source of information in a variety 
of biological fields, particularly in biotechnology. The process 
of phylogeny reconstruction requires four steps. The first step 
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comprises sequence selection and alignment to determine site-
by-site DNA or amino acid differences. The second step is to 
build a mathematical model describing the evolution in time of 
the sequences. A model can be built empirically using proper-
ties calculated through comparisons of observed sequences or 
parametrically using chemical and biological properties of DNA 
and amino acids. Such models permit estimation of the genetic 
distance between two homologous sequences, measured by the 
expected number of nucleotide substitutions per site that have 
occurred on the evolutionary lineages between them and their 
most recent common ancestor. Such distances may be represented 
as branch lengths in a phylogenetic tree; the extant sequences 
form the tips of the tree, whereas the ancestral sequences form 
the internal nodes and are generally not known. Note that align-
ment can also be considered as part of the evolutionary model. 
Although successful attempts to combine sequence alignment 
and phylogeny do exist (1), current methods for phylogeny 
reconstruction require a known sequence alignment and neglect 
alignment uncertainty. Alignment columns with gaps are either 
removed from the analysis or are treated in an ad hoc fashion. As 
a result, evolutionary information from insertions and deletions 
is typically ignored during phylogeny reconstruction. The third 
step involves applying an appropriate statistical method to find 
the tree topology and branch lengths that best describe the phy-
logenetic relationships of the sequences. One of the most impor-
tant method for phylogeny reconstruction is that of maximum 
likelihood (2). The fourth step consists of the interpretation of 
results. Figure 13.1 shows that most of the human genome is pop-
ulated by DNA repeats of different length, number, and degree 
of dispersion. Long repeats in few copies are usually orthologous 
genes, which may contain hidden repeats in the form of runs 
of amino acids, and retroviruses inserted in the genome. For 
example, the human genome contains more than 50 chemok-
ine receptor genes that have high sequence similarity (3) and 
almost 1,000 olfactory receptor genes and pseudogenes (4).
Protein-coding sequences (specifically exons) comprise <1.5% of 
the human genome. Short repetitive DNA sequences may be 
categorized into highly and moderately repetitive. The first is 
formed by tandemly clustered DNA of variable length motifs 
(5–100 bp) and is present in large islands of up to 100 Mb. The 
second can be either short islands of tandemly repeated micro-
satellites/minisatellites (“CA repeats,” tri- and tetra-nucleotide 
repeats) or mobile genetic elements. Mobile elements include 
DNA transposons, short and long interspersed elements (SINEs 
and LINEs), and processed pseudogenes (5, 6). This chapter 
describes the most widely used models of evolution for the 
different elements of a genome.
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Consider a stochastic model for DNA or amino acid sequence 
evolution. For the sake of brevity, we for the most part refer 
to DNA models, since the modifications for amino acid models 
are straightforward. We assume independence of evolution at 
different sites so that the probability of a set of sequences for 
some tree is the product of the probabilities for each of the 
sites in the sequences. At any single site, the model works with 
probabilities Pij(t) that base i will have changed to base j after 
a time t. The subscripts i and j take the values 1, 2, 3, 4 rep-
resenting bases A, C, G, T, or 1, 2,…, 20 representing amino 
acids. The state space of the Markov chain is SDNA = {A, C, G, 
T} for DNA sequences and Sprotein = {aa1,…,aa20} for amino 
acid sequences. A random variable, X(t) ∈ S, describes the 
substitution process of a sequence position. In general, a vari-
able X follows a Markov process if:

P(X(tn) = j |X(t1) = i1.....X(tn–1) = in–1) = P(X(tn) = j |X(tn–1) = in–1)

for all j,i1,….,in. The Markov assumption asserts that P(X(t + s)
= j|X(s) = i) is independent of s ≥ 0. Assume that if a base 
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Fig. 13.1. Schematic description of the repetitious organization of the human genome.
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mutates, it changes to a type i with a constant probability πi.
The simplest model considers a constant rate m of mutation 
per unit time (generation). The probability of no mutations 
at a site after t generations is (1 − m)t. The probability p that 
a mutation has occurred is thus: p = 1 − (1 − m)t ≈ 1 − e−mt. The 
probability of a change from base i to base j after time t can 
therefore be written as:

Pii (t) = (1−p) + ppj , i = j
Pij (t) = ppj , j � i

Note that probabilities involve mutation rate and time only 
through their product mt, which represents the expected number 
of substitutions along the branches of the tree.

A Markov process can have three important properties: 
homogeneity, reversibility, and stationarity. Homogeneity 
means that the rate matrix is independent of time, i.e., that the 
pattern of nucleotide distribution remains the same in different 
parts of the tree. This is not strictly true for DNA sequences 
because of the dependence of mutation on local sequence con-
text. A homogeneous process has an equilibrium distribution, 
which is also the limiting distribution when time approaches 
infinity, i.e., limt→• Pij(t) = pj (and limt→0+ Pij(t) = I, where I is 
the identity matrix, i.e., Iij = 1 if i = j,Iij = 0 if i � j). Reversibility 
means that piPij(t) = pjPji(t) for all i,j and t. The rate matrix for 
a reversible process has only real eigenvalues and eigenvectors. 
Stationarity means that the process is at equilibrium, i.e., nucle-
otide frequencies have remained more or less the same during 
the course of evolution. Base frequencies are generally different 
in different species; therefore, these assumptions are clearly vio-
lated. In particular, bacterial genomes show large differences in 
base compositions.

Instead of considering time measured in discrete generations 
we can work with continuous time. We can write:

P P P Q P I Q( ) ( ) ( ) ( )( )t dt t t dt t dt+ = + = +

where Q is the instantaneous rate matrix of transition prob-
abilities. Simple matrix manipulations and spectral diagonali-
zation in order to calculate P(t) = etQ can be summarized as 
follows:
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Therefore, each component of P(t) = U.diag{e tl1,….., e tln}.U−1

can be written as:P t c eij ijk
t

k

k( ) = ∑ l , where i, j, k = 1,…..,4 for 
DNA sequences; i, j, k = 1,…..,20 for proteins; and cijk is a func-
tion of U and U−1. The row sums of the transition probability 
matrix P(t) at time t are all ones. It is noteworthy that t and Q
are confounded, Qt = (g Q)(t/g ) for any g ≠ 0; twice the rate at 
half the time has the same results.

In 1969 Jukes and Cantor proposed a model in which all the pis
are set equal to 1/4, and one base changes into any of the others 
with equal probability a (7). Kimura, in 1980 proposed a two-
parameter model that considered the transitions versus transver-
sions bias (8). The substitution matrix probability for this model 
can be represented as:

Q =

− −
− −

− −
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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a b b a b
b a b b a
a b a b b
b a b a b

2
2

2
2

In this matrix, bases are in alphabetic order, i.e., A, C, G, T. 
After Kimura, several authors proposed models with an increas-
ing number of parameters. For instance, Blaisdell introduced an 
asymmetry for some reciprocal changes: i → j has a different 
substitution rate than j → i (9). In contrast to Kimura’s two-
parameter model, the four-parameter model proposed by Blaisdell 
does not have the property of time reversibility. It is noteworthy 
that, beyond the biological rationale, time reversibility simplifies 
the calculations.

Felsenstein proposed a model in which the rate of substitu-
tion of a base depends on the equilibrium frequency of the nucle-
otide; given that the sum of equilibrium frequencies must be 1, 
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this adds 3 more parameters (10). The Q matrix for this model 
can be represented as:

Q =

− −
− −

− −

m p mp mp mp
mp m p mp mp
mp mp m p mp
mp mp

( )
( )

( )

1
1

1

A C G T
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A CC G Tmp m p− −
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⎦

⎥
⎥
⎥
⎥( )1

Hasegawa and co-workers improved Felsenstein’s model by con-
sidering transition and transversion bias (11). They considered 
Qij = apj for transitions, Qij = bpj for transversions (where Σ pjQij
= −1). Moreover they considered two classes of DNA sites: Class 
1 represents the third codon position; class 2 sites are the first 
and second codon position and also positions in ribosomal DNA 
and tRNA. This distinction is based on the observation that the 
majority of mutations occurring at the third site do not change 
the coded amino acid, i.e., they are synonymous. For both these 
classes they calculated the pj. The rate matrix is:

Q =

− −
− −

− −

ap bp bp ap bp
bp ap bp bp ap
ap bp ap bp bp
bp ap

g

g
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where pR = pA + pG and pg = pC + pT. Thus, with respect to Haseg-
awa’s model, Kimura’s model corresponds to the case in which 
all pi are equal. Felsenstein’s model corresponds to the case of 
b = a. When both these simplifications are made we obtain the 
Jukes-Cantor model. The most general model can have at most 
12 independent parameters; insisting on reversibility reduces this 
to 9 and can be parameterized as follows:
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−
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A

where the diagonal elements should be replaced by terms that 
make row sums equal to zero. The models described above are 
parametric, in the sense that they are defined in terms of parameters 
(pi, a, b, etc.) inspired by our understanding of biology. Empirical 
models of nucleotide substitution also have been studied. These 
models are derived from the analysis of inferred substitutions in 
reference sequences, perhaps the sequence under current study 
or from databases. Advantages of this approach can be a better 
description of the evolution of the sequences under study, if a suit-
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able reference set is used, particularly if this reference set is large. 
Disadvantages can be inaccuracy due to an inappropriate reference 
set, and a lack of a broader biological interpretability of purely 
empirical findings. More general models of nucleotide substitu-
tion have been studied by other authors as for instance Lanave 
et al. (12), Zharkikh (13), and Li (14).

The incorporation of heterogeneity of evolution rates among 
sites has led to a new set of models that generally provide a 
better fit to observed data, and phylogeny reconstruction has 
improved (15). Hasegawa considered three categories of rates 
(invariable, low rate, and high rate) for human mitochondrial 
DNA (16). Although a continuous distribution in which every 
site has a different rate seems to be the most biological plausi-
ble model, Yang has shown that four categories of evolutionary 
rates with equal probability, chosen to approximate a gamma 
distribution (the discrete Gamma model), perform very well. 
This model is also considerably more practical computationally 
(15). The gamma distribution, Γ, has two parameters: a shape 
parameter, Γ, and a scale parameter, b. If we assume b = a, then 
the mean becomes 1 and the variance 1/a. The shape param-
eter is inversely proportional to the mutation rate. If a is less 
than 1, there is a relatively large amount of rate variation, with 
many sites evolving very slowly, but some sites evolving at a high 
rate. For values of a greater than 1, the shape of the distribution 
changes qualitatively, with less variation and most sites having 
roughly similar rates. Yang (16) and Felsenstein and Churchill 
have implemented methods in which several categories of evo-
lutionary rates can be defined (17). Both methods use hidden 
Markov model techniques (18–20) to describe the organiza-
tion of areas of unequal and unknown rates at different sites 
along sequences. All possible assignments of evolutionary rate 
category at each site contributed to the phylogenetic analysis 
of sequences, and algorithms are also available to infer the most 
probable rate category for each site.

It is well known that neighboring nucleotides in DNA sequences 
do not mutate independently of each other. The assumption of 
independent evolution at neighboring sites simplifies calculations 
since, under this assumption, the likelihood is the product of indi-
vidual site likelihoods. A good example of violation is provided 
by the methylation-induced rate increase of C to T (and G to A) 
substitutions in vertebrate CpG dinucleotides, which results in 
1,718-fold increased CpG to TpG/CpA rates compared with 
other substitutions. Several authors have investigated the relative 
importance of observed changes in two adjacent nucleotide sites 
due to a single event (21). Seipel and Haussler (2003) (22) have 
shown that a Markov chain along a pair of sequences fits sequence 
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data substantially better than a series of independent pairwise 
nucleotide distributions (a zero-order Markov chain). They also 
used a Markov model on a phylogenetic tree, parameterized by 
a di-nucleotide rate matrix and an independent-site equilibrium 
sequence distribution, and estimated substitution parameters 
using an expectation maximization (EM) procedure (23).

Whelan and Goldman (24) have developed the singlet-dou-
ble-triplet (SDT) model, which incorporated events that change 
one, two, or three adjacent nucleotides. This model allows for 
neighbor- or context-dependent models of base substitutions, 
which consider the N-bases preceding each base and are capable 
of capturing the dependence of substitution patterns on neigh-
boring bases. They found that the inclusion of doublet and triplet 
mutations in the model gives statistically significant improvements 
in fit of model to data, indicating that larger-scale mutation events 
do occur. There are indications that higher-order states, autocor-
rected rates, and multiple functional categories all improve the 
fit of the model and that the improvements are roughly additive. 
The effect of higher-order states (context dependence) is particu-
larly pronounced.

In an attempt to introduce greater biological reality through 
knowledge of the genetic code and the consequent effect of nucle-
otide substitutions in protein coding sequences on the encoded 
amino acid sequences, Goldman and Yang (25, 26) described a 
codon mutation model. They considered the 61 sense codons 
i consisting of nucleotides i1i2i3. The rate matrix Q consisted of 
elements Qij describing the rate of change of codon i = i1i2i3 to 
j = j1j2j3 (i ≠ j) depending on the number and type of differences 
between i1 and j1, i2 and j2, and i3 and j3 as follows:

Q

i j

eij

k k

j
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−

0 if 2 or 3 of the pairs  are different,
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V
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d V
e
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where daai,aaj
 is the distance between the amino acid coded by the 

codon i (aai) and the amino acid coded by the codon j (aaj) as 
calculated by Grantham (27) on the basis of the physicochemical 
properties of the amino acids. This model takes account of codon 
frequencies (through pj), transition/transversion bias (through 
k), differences in amino acid properties between different codons 
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(daai,aaj
), and levels of sequence variability (V). Recent works by 

Yang and Nielsen (28) and Pedersen et al. (29) have developed 
and improved this model.

Note that the use of likelihood ratio tests, LRTs, to compare 
pairs of models using different statistical distributions to describe 
the variation in x has proved an effective way of identifying adap-
tive evolution. For these tests, the null model describes the evo-
lution of a protein as a distribution containing only neutral and 
purifying selection (x 6 1), and the alternative model describes a 
similar distribution that also allows positive selection (x can take 
all values). A popular choice of models for forming these hypoth-
eses are M7 and M8 (30). M7 (the null model) describes varia-
tion in x between 0 and 1 with a beta distribution, which can take 
a variety of shapes that describe a wide range of potential selec-
tive scenarios and requires only two simple parameters to be esti-
mated from the data. M8 (the alternate model) contains the beta 
distribution of M7, but also includes a single variable category of 
x to describe positive selection. When statistical tests show that 
M8 explains the evolution of the protein significantly better than 
M7 and the additional category of x is >1, positive selection is 
inferred. Many new incidences of adaptive evolution have been 
found using this approach and extensions of these methods allow 
the detection of the specific sites in a protein that are undergoing 
positive selection.

In contrast to DNA substitution models, amino acid replacement 
models have concentrated on the empirical approach. In reality 
it is hardly practical to use a model with hundreds of parameters. 
Dayhoff and co-workers developed a model of protein evolution 
that resulted in the development of a set of widely used replace-
ment matrices (31, 32). In the Dayhoff approach, replacement 
rates are derived from alignments of protein sequences that are 
at least 85% identical and used to build phylogenetic trees. The 
internal nodes of the tree give the inferred ancestral sequences; 
the count of amino acid changes between the ancestral and the 
actual sequences gives the relative mutability of each of the 20 
amino acids. The 85% threshold of amino acid identity between 
aligned sequences ensures that the likelihood of a particular 
mutation (e.g., L → V ) being the result of a set of successive muta-
tions (e.g., L → x → y → V ) is low. An implicit instantaneous 
rate matrix was estimated, and replacement probability matrices
P(t) generated for different values of t. Dayhoff and co-workers 
calculated the observed amino acid replacement pattern in a 
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Fig. 13.2. Comparison of amino acid replacement models: Dayhoff, JTT, REV, REV+ Gamma.

set of closely related sequences showing that an amino acid is very 
frequently replaced by an amino acid of similar physiochemical 
properties. Jones et al. (33) and Gonnett et al. (34) have also cal-
culated an amino acid replacement matrix specifically for mem-
brane spanning segments (Fig. 13.3). This matrix has remarkably 
different values from the Dayhoff matrices, which are known to 
be biased toward water-soluble globular proteins. One of the 
main uses of the Dayhoff matrices has been in database search 
methods where, for example, the matrices P(0.5), P(1), and 
P(2.5) (known as the PAM50, PAM100, and PAM250 matrices) 
are used to assess the significance of proposed matches between 
target and database sequences. Since relatively few families were 
considered, the resulting matrix of accepted point mutations 
included a large number of entries equal to 0 or 1. The counts of 
the amino acid changes between the inferred ancestral sequences 
and the actual sequences give an estimate of the relative mutability 
of each of the 20 amino acids. The number of the matrix (PAM50 
and PAM100) refers to the evolutionary distance; greater num-
bers are greater distances. Figure 13.2 shows a comparison 
between the most widely used amino acid substitution models. 
Matrices for greater evolutionary distances are extrapolated from 
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those for lesser distances. The mutation probability matrix is 
specific for a particular evolutionary distance, but may be used 
to generate matrices for greater evolutionary distances by mul-
tiplying it repeatedly by itself. The BLOSUM series of matrices 
generally perform better than PAM matrices for local similarity 
searches (35). Claverie has developed a set of substitution matri-
ces designed explicitly for finding possible frame shifts in protein 
sequences (36).

All the methods for generating mutational data matrices are simi-
lar to that described by Dayhoff et al. (32). The method involves 
three steps: (1) clustering the sequences into homologous fami-
lies, (2) tallying the observed mutation between highly similar
sequences, and (3) relating the observed mutation frequencies to 
those expected by pure chances.

A method proposed by David Jones, Willie Taylor, and Janet 
Thornton uses inferred phylogenetic relationships among the 
sequence data (33).

The first step is to generate a mutation probability matrix; 
Elements of this matrix give the probability that a residue in 
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Fig. 13.3. Comparison of structural replacement matrices: alpha helix, transmembrane 
helix, mitochondrial transmembrane helix, mtREV24.
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column j will mutate to the residue in row i in a specific unit of 
evolutionary time. The diagonal elements of the matrix repre-
sent the probability that residue i = j remains unchanged, Mij = 1 
− lmj, where mj is the average relative mutability of residue j, and 
l is a proportional constant. Non-diagonal elements are given 
by Mji = lmiAij /Σi Aij, where Aij is a non-diagonal element of 
the raw PAM matrix. The value of l relates to the evolutionary 
distance accordingly: Σi fiMij = 1 − 0.01. P, where fi is the nor-
malized frequency of occurrence of residue i, and P approximates 
the evolutionary distance (in PAMs) represented by the matrix. The
relationship breaks down for P >> 5. P is usually given the value 
of 1 so that the basic mutation matrix represents a distance of 1 
PAM. Matrices representing larger evolutionary distances may be 
derived from the 1 PAM matrix by matrix multiplication. When 
used for the comparison of protein sequences, the mutation 
probability matrix is usually normalized by dividing each element 
by the relative frequency of exposure to mutation of the amino 
acid. This operation results in the symmetrical “relatedness odds 
matrix,” in which each element gives the probability of amino 
acid replacement. A second step is the calculation of log-odds 
Mij = 10 log10 Rij, where Rij are elements of the relatedness odds 
matrix. The logarithm of each element is taken to allow prob-
abilities to be summed over a series of amino acids rather than 
requiring multiplication. The resulting matrix is the “log-odds 
matrix,” which is frequently referred to as “Dayhoff’s matrix” 
and often used at a distance of close to 256 PAM since this lies 
near to the limit of detection of distant relationships. Henikoff 
and Henikoff (35), using local, ungapped alignments of distantly 
related sequences, derived the BLOSUM series of matrices. The 
number after the matrix (BLOSUM62) refers to the minimum 
percent identity of the blocks used to construct the matrix; as a 
rule of thumb, greater numbers are lesser distances. It is note-
worthy that these matrices are directly calculated without extrap-
olations. There is no such thing as a perfect substitution matrix; 
each matrix has its own limitations. The general consensus is 
that different matrices are better adapted to different purposes 
and matrices derived from observed substitution data (e.g., the 
Dayhoff or BLOSUM matrices) are superior to identity, genetic 
code, or physical property matrices. However, there are Dayhoff 
matrices of different PAM values and BLOSUM matrices of dif-
ferent percentage identities. The most widely used matrix for 
protein sequence comparison has been the PAM-250 matrix. This 
matrix was selected since in Monte Carlo studies matrices reflecting 
the evolutionary distance gave a consistently higher significance 
score than other matrices in the range 0–750 PAM. When using 
a local alignment method, Altschul suggests that three matrices 
should ideally be used: PAM40, PAM120, and PAM250. The 
lower matrices will tend to find short alignments of highly similar 
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sequences, whereas higher PAM matrices will find longer, weaker 
local alignments (37).

It is now possible to recreate inferred ancestral proteins in the 
laboratory and study the functions of these molecules. Tracing 
changes in protein structure along the branches of a phyloge-
netic tree can provide important insights into molecular function. 
How confident can we be of correctly reconstructing ancestral 
proteins? For example, if you were 95% sure of which nucleotide 
was present at each site in a sequence 100 nucleotide long, then 
your overall probability for having the correct sequence would 
be (0.95)100, which results in a <1% chance of reconstructing the 
correct sequence. Thus the development of good models of evo-
lution is of utmost importance.

The relationship between phenotype and survival of the geno-
type is central to both genetics and evolution. The idea is that 
protein sequences are close to the genotype, whereas protein 
structures are a fundamental unit of the phenotype. The fact 
that protein structure changes more slowly over time than does 
protein sequence allows one to explore the constraints on pro-
tein sequence evolution that serve to maintain protein structure. 
Early investigations were mainly concerned with characterizing 
how patterns of amino acid replacement at a site in a protein 
are associated with the structural environment of the site (38).
In addition to the obvious relevance of this research for a better 
understanding of the process of molecular evolution, it is also 
pertinent to prediction of protein structure, which is a central 
problem in biotechnology.

Phylogenetic inference has been improved by incorporating 
structural and functional properties into inferential models. This 
information can be used to refine phylogenetic models and pro-
vide structural biologists with additional clues to natural selection 
and protein structure. The first approach is to consider details 
that influence structure but are not immediately related to it, 
such as physicochemical properties of amino acids (hydrophobicity, 
charge, and size) (38). Approaches closer to structural biology 
have been implemented by Rzhetsky et al. (39) and Goldman et al.
(40). Figure 13.3 shows the comparison between structure-
specific or organelle specific amino acid substitution models.

Goldman and co-workers have introduced a set of evolutionary 
models that combine protein secondary structure and amino acid 
replacement. Their approach is related to that of Dayhoff and 
co-workers but considers different categories of structural envi-
ronment: a, helix, trans-membrane helix; b, sheet, turn, and loop; 
and further classifies each site according to whether it is exposed 
to solvent or is buried; the Dayhoff approach simply considers 
an average environment for each amino acid. These matrices are 
organized in a composite evolutionary model through the means 
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of a hidden Markov model algorithm (28–31). Maximum 
likelihood estimation of phylogeny is then possible using a multiple
sequence alignment. An important characteristic of the algorithm 
is that it can work without any specific structural information for 
the protein under study. In this case it uses the series of structure-
specific replacement matrices and a set of transition probabilities 
between them to represent a model of the typical structure of 
similar proteins, which will incorporate prior knowledge gained 
from the analysis of other proteins of known structure. The 
algorithm can compute likelihoods integrated over all possible 
structures, weighted in accordance to their probability under the 
structural model. Information relating to the statistical depend-
ence of the sequences in the dataset and their patterns of amino 
acid replacements can be used to derive both phylogeny and pre-
dicted secondary structure organization. This section presents 
a brief description of the general algorithm implemented; full 
description of existing models are given by Goldman, Thorne, 
and Jones (41, 42) and Liò and Goldman (43, 44).

Let the aligned dataset be denoted by S, its length by N, the 
first i columns of the dataset by Si, and the ith column itself by si.
Gaps in the alignments are considered as missing information, as 
in most common phylogenetic programs. The likelihood of the 
tree T is given by Pr(S | T ), and this is calculated via the terms 
Pr(Si, ci | T ) for each possible secondary structure category ci at 
site i using the iteration:

Pr( , | ) Pr( , | ) Pr( | , )S c T S c T s c T
c

i i i i c c i ii i

i

= − − −

−

∑ 1 1 1

1

r

for i > 1. The terms Pr(Si, ci | T) are evaluated using Markov process
replacement models appropriate for each secondary structure ci
and the “pruning” algorithm of Felsenstein (10). The rij are the 
HMM transition probabilities between states. For i = 1, the itera-
tion is started using:

Pr( , | ) Pr( | , ).S c T s c T c1 1 1 1 1
= y

where yc1
 is the stationary distribution of ci. When completed, the 

iteration gives the required Pr(S | T ) because:

Pr( | ) Pr( , | ).S T S c T
c
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N
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If secondary structure and accessibility information are available, 
modified likelihood calculations can be performed that do not 
involve the rij. Once the tree topology and branch lengths (T̂ )
that have maximum likelihood have been found, the calculation of 
a posteriori probabilities of secondary structures for each site of the 
protein, Pr(ci | S, T̂ ), allows prediction of the secondary structure 
for each site. This maximum likelihood approach gives a solid base 
for hypothesis testing and parameter estimation.
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Echave and collaborators have developed an approach to 
modeling structurally constrained protein evolution (SCPE) in 
which trial sequences generated by random mutations at 
the gene level are selected against departure from a reference 
three-dimensional structure (45). The model is based on a sequence-
structure distance score, Sdist, which depends on a reference native 
structure and a parameter, Sdiv, which measures the degree of 
structural divergence tolerated by natural selection. The sequence-
structure distance measure Sdist is calculated as follows. First, the trial 
sequence is forced to adopt the three-dimensional reference structure. 
Then, mean field energies per position Etrial(p) and Eref(p) are 
calculated for the trial and reference sequences, respectively. Finally,
S E p E pdist trial ref= −⎡

⎣⎢
⎤
⎦⎥

( ) ( )2 2  is obtained. To calculate the mean-field
energies, the authors used the PROSA II potential (46), which 
includes additive pair contributions that depend on the amino 
acid types and the geometric distance between the Cb atoms 
of the interacting amino acids, as well as a surface term that 
models the protein solvent interactions. An SCPE simulation 
starts with a reference DNA sequence that codes for a ref-
erence protein of known three-dimensional structure. Then, 
each run involves the repetition of evolutionary time steps, 
which consist of the application of the following four opera-
tions. First, the DNA sequence of the previous time step is 
mutated by introducing a random nucleotide substitution into 
randomly chosen sequence positions (Jukes-Cantor model). 
Second, if the mutation introduces a stop codon, the mutated 
DNA is rejected; otherwise, the muted DNA is translated, using 
the genetic code, to obtain a trial protein sequence. Third, the 
sequence-structure distance score, Sdist, is computed. The trial
sequence is accepted only if Sdist is below the specified cut-off, Sdiv,
which represents the degree of structural divergence allowed 
by natural selection. A similar approach was proposed by Bas-
tolla and colleagues, in which possible mutations are tested 
for conservation of structural stability using a computational 
model of protein folding (47).

In all the previous amino acid substitution models, there is an 
assumption that the sites evolve independently. The evolution of 
interacting sites is less easy to model. Correlations between sites 
distant in the linear sequence of a protein often reflect effects 
on parts of the protein that are very close in the folded (three-
dimensional) structure. As such analyses become more special-
ized, however, there is some concern over whether there will ever 
be enough data to find these correlations reliably. Pollock and 
co-workers (48) considered a Markov process model similar to 
that of Felsenstein (10) for a single site that may have two 
states A and a, where A might be a set of large residues and a 
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the complementary set of small residues, or residues with a dif-
ferent charge. There is a rate parameter, l, and an equilibrium 
frequency parameter, pA (pA + pa = 1), such that the instantane-
ous rate of substituting state j for a different state i is equal to lpj.
The matrix of transition probabilities at time t is then:

Pij
i

i

t
t t i j

t i j
( )

exp( ) exp( )
exp( )

=
− + − =

− ≠
⎧
⎨
⎩

l p l
p l

1
1

This substitution process is reversible, i.e., piPij(t) = pjPji(t). 
A further extension is to model correlated change in pairs of 
sites. This was first introduced by Pagel (49) for comparative 
analysis of discrete characters. Consider a second site with 
two states, B and b, with equilibrium frequencies pB and pb
(where pB + pb = 1). Then the matrix of instantaneous transition 
rates is:
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−

−

−
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where Σij is the sum of off-diagonal elements for row ij and 
lA and lB are the two rate parameters governing substitution 
at the two loci, A and B. Rows and columns are ordered as 
AB, Ab, aB, ab. The number of free parameters is five: two 
rate parameters, and because the pij sum to one, three inde-
pendent values of pij. There is an extra degree of freedom 
that can be represented by the quantity RD = pABpab − pAbpaB;
this quantity is analogous to the linkage disequilibrium. If 
the quantity RD is different from zero, there is some degree 
of dependence between the two sites. RD can be negative 
or positive and this corresponds to either compensation or 
anti-compensation of the residues. Again, the substitution 
probabilities for the co-evolving model can be calculated 
using P(t) = exp[Qt]. Rather than using this model to con-
struct a phylogenetic tree (which would be possible in prin-
ciple), if there is a given phylogenetic tree, it is possible to 
use it to test the evolutionary model based on likelihood 
calculations.

As a final target, the understanding of protein evolution 
may allow one to distinguish between analogous and homolo-
gous proteins, i.e., detect similarities in those proteins that 
have very low sequence homology and have probably diverged 
from a common ancestor into the so-called twilight zone.
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Ribosomal RNA tertiary structure has been so far very hard to 
infer because the combinatorics of interaction grows very rapidly 
and strongly depends on the kinetics. Fairly reliable predictions of 
stable folded secondary structures can be made instead; it is pos-
sible to calculate free energies and other thermodynamic quantities 
for stem and loop regions. These two elements have different rates 
of base substitution because the stems are double-stranded regions 
and the loops are single-stranded RNA and thus selection pres-
sures are different. The time reversibility constraint and the average 
mutation rate are set as they were for DNA models. The pairing 
within the stems involves the Watson-Crick A:U, G:C pairs, and 
the non-canonical G:U pair; other pairings exist, but they are rare 
enough to be disregarded in the current context. The stem regions 
are modeled using a 16-state rate matrix (because of all the pos-
sible pairings), whereas the loop regions are modeled using a four-
state rate matrix. Rzhetsky and co-workers introduced a model to 
estimate base substitution in ribosomal RNA genes and infer phy-
logenetic relationships (50). The model takes into account rRNA 
secondary structure elements: stem regions and loop regions. 
Other stimulating references are (51) and (52). All the models 
described so far operate at the level of individual nucleotides.

Genome sequencing projects have revealed that much of the 
increase in genome size from bacteria to humans has been a result 
of DNA duplication. Different extents of duplication are pos-
sible: a small part of a gene, a module, an exon, an intron, a full 
coding region, a full gene, a chromosome segment containing 
a cluster of genes, a full chromosome, or the entire genome. In 
eukaryotes, gene duplications seem to have occurred often, for 
example, the olfactory (4), HOX, or globin genes in animals. 
Moreover, the remnants of whole genome duplications have been 
identified, for example, for frogs, fishes, different yeast strains, 
and Arabidopsis (6). The three main distinct mechanisms that 
generate tandem duplication of DNA stretches in eukaryotes are 
slipped-strand mis-pairing, gene conversion, and unequal recom-
bination. Not every gene duplication results in the acquisition 
of a new function by one of the two duplicates: Most families, 
for example the globin and olfactory gene clusters, also contain 
many duplicates that have lost function (pseudogenes). Other 
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duplicates can retain the original function and be maintained 
in a given genome for an indefinite time. The duplication of a 
single gene is an event whose average rate is on the order of 0.01 
per gene per million years, ranging between 0.02 and 0.002 in 
different species. Moreover, duplicates exhibit an average half-life 
of about 4 million years, a time that appears to be congruent with 
the evolution of novel functions or the specialization of those that
are ancestral and inefficient. Half of the genes in a genome are 
expected to duplicate and increase to high frequency at least once
on time scales of 35 to 350 million years. Therefore, the rate of 
duplication of a gene is of the same order of magnitude as the 
rate of mutation per nucleotide site (4).

A present debate on vertebrate evolution concentrates on 
the relative contribution of the large-scale genome duplication 
(the so-called big bang model) after the echinoderms/chordates 
split and before the vertebrate radiation, and on continuous origin
by small-scale fragment duplications. After duplication, a gene 
starts diverging from the ancestral sequence. This is true not only 
of coding sequences, but also of regulatory sites.

The classical model of gene duplication states that, after 
the duplication event, one duplicate may become functionless, 
whereas the other copy retains the original function (53). Com-
plete duplicates (when the duplication involves both the cod-
ing and all the regulatory sequences of the original gene) are 
expected to be redundant in function (at least in the immediate 
beginning). In this case, one duplicate may represent a backup 
copy shielding the other from natural selection. This implies (as 
it is likely that a mutation will have a negative effect on func-
tion) that one duplicate will probably lose its function, whereas 
the other will retain it. Very rarely, an advantageous mutation 
may change the function of one duplicate and both duplicates 
may be retained. The most plausible fate in the light of the 
classical model is that one of the two duplicates will become 
a pseudogene. This fails to explain the amount of functional 
divergence and the long-term preservation of the large numbers 
of paralogous genes that constitute the eukaryotic multigene 
families, which often retain the original function for a long time. 
Accordingly, Walsh (54) used a Markov model of the evolution-
ary fate of duplicates immediately after the duplication event 
(when the duplicates are perfectly redundant). This Markov 
model has two absorbing states, fixation and pseudogenization. 
The main result is that if the population size is large enough, the 
fate of most duplicated genes is to gain a new function rather 
than become pseudogenes. Nadeau and Sankoff (55), study-
ing human and mice genes, estimated that about 50% of gene 
duplications undergo functional divergence. Other researches 
showed that the frequency of preservation of paralogous genes 
following ancient polyploidization events are in the neighborhood 
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of 30–50% over periods of tens to hundreds of millions of years. 
To overcome these limitations, new models have been proposed 
that are a better fit to empirical data.

In eukaryotes, gene expression patterns are typically controlled 
by complex regulatory regions that finely tune the expression of 
a gene in a specific tissue, developmental stage, or cell lineage. 
Of particular interest is the combinatorial nature of most eukary-
otic promoters, which are composed of different and partially 
autonomous regions with a positive or negative effect on down-
stream gene transcription, with the overall expression pattern 
being determined by their concerted (synergistic) action.

Similarly, proteins can contain different functional and/or 
structural domains that may interact with different substrates 
and regulatory ligands, or other proteins. Every transcriptionally 
important site or protein domain can be considered as a sub-
functional module for a gene or protein, each one contributing 
to the global function of the gene or protein. Starting from this 
idea, Lynch and Force  first proposed that multiple sub-functions
of the original gene may play an important role in the preserva-
tion of gene duplicates. They focused on the role of degenerative 
mutations in different regulatory elements of an ancestral gene 
expressed at rates which depend on a certain number of different 
transcriptional modules (sub-functions) located in its promoter 
region. After the duplication event, deleterious mutations can 
reduce the number of active sub-functions on one or both the 
duplicates, but the sum of the sub-functions of the duplicates 
will be equal to the number of original functions before duplica-
tion (i.e., the original functions have been partitioned between 
the two duplicates). Similarly, considering both duplicates, they 
are together able to complement all the original sub-functions; 
moreover, they may have partially redundant functions.

This example of sub-functionalization considers both functions 
affecting the expression patterns dependent on promoter sequences 
recognized by different transcription factors, and also “hub” proteins 
with different and partially independent domains. The sub-
functionalization, or duplication-degeneration-complementation 
model (DDC) of Lynch and Force , differs from the classical model 
because the preservation of both gene copies mainly depends on 
the partitioning of sub-functions between duplicates, rather than the 
occurrence of advantageous mutations.

A limitation of the sub-functionalization model is the 
requirement for multiple independent regulatory elements and/or 
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functional domains. The classical model is still valid if gene functions
cannot be partitioned; for example, when selection pressure acts 
to conserve all the sub-functions together. This is often the case 
when multiple sub-functions are dependent on one another.

A recent improvement in gene duplication models has been pro-
posed by He and Zhang (58) starting from the result of a work 
on yeast protein interaction data (from MIPS) and human expres-
sion data that have been tested both under the neo-function-
alization and sub-functionalization models. Neither model alone 
satisfied the experimental results for duplicates. Further progress 
is formalized as the sub-neo-functionalization model, which is a 
mix of the previous models; sub-functionalization appears to be a 
rapid process, whereas neo-functionalization requires more time 
and continues long after duplication (59).

The rapid sub-functionalization observed by He and Zhang 
can be viewed as the acquisition of expression divergence between 
duplicates. After sub-functionalization has occurred, both dupli-
cates are essential (because only together can they maintain the 
original expression patterns); hence, they are kept. Once a gene 
is established in a genome, it may retain its function or evolve to 
a new specialization (i.e., undergo neo-functionalization).

Dermitzakis and Clark (53) developed a sub-functionalization 
test, and identified several paralogs common to both humans and 
mice in which this has occurred. The basic idea is that the sub-
stitution rate in a given functional region will be low if a gene 
possesses a function that relies on those residues; otherwise, the 
substitution rate in the same region will be higher. The statistical 
method used by the authors allows the identification of regions 
with significantly different substitution rates in two paralogous 
genes. Following Tang and Lewontin (60), Dermitzakis and Clark 
represented the pattern of change across a gene by the cumulative 
proportion of differences between a pair of orthologs (termed 
“pattern graph”). The pattern graph shows sharp increases when 
the substitution rate is high and almost no change in regions 
of sparse changes. Dermitzakis and Clark proposed the “paralog 
heterogeneity test,” comparing the pattern graphs for human and 
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mouse paralogs of several interesting genes. If one paralog has had 
a higher rate of substitution than the other in a given region, the 
difference between the pattern graphs shows a sharp rise or fall. 
If the paralogs have evolved at the same rate within a region, the 
difference between the pattern graphs will change slowly across 
the region. The “paralog heterogeneity test” compares the long-
est stretch of increasing or decreasing difference between the two 
pattern graphs to what would be expected if they had evolved 
similarly. The null distribution is simulated by the repeated ran-
dom permutation of the two genes, so neither gene has distinct 
regions. If a region contains significant differences when com-
pared with the null distribution, then the paralogs have evolved 
at different rates in that region. In that case, the sub-functionali-
zation model predicts that it is important to the function of the 
paralog in which it is conserved. Sub-functionalization assumes 
there is more than one region of functional importance and it is 
possible for more than one region to be involved in a given func-
tion. By testing the sum of the two or more largest stretches, the 
significance of multiple regions can be determined; this can lead 
to predictions of functional regions for both paralogs.

A possible fate of a duplicated gene is the acquisition of a new 
function or the specialization of a pre-existing but inefficient func-
tion. Again, statistics permit the study of functional divergence in 
a rigorous manner. Changes in protein function generally lead to 
variations in the selective forces acting on specific residues. An 
enzyme can evolve to recognize a different substrate that plau-
sibly interacts with residues not involved in docking the original 
ligand, leaving some of them free. Similar changes can often be 
detected as evolutionary rate changes at the sites in question. 
It is known that a good estimator of the sign and strength of the 
selective force acting on a coding sequence is the ratio between 
non-synonymous and synonymous rates: If the values exceed 1, 
the gene is said to be under positive selection; otherwise, the 
gene is said to be under negative selection.

This divergence of protein functions often is revealed by a 
rate change in those amino acid residues of the protein that are 
more directly responsible for its new function. To investigate this 
change in evolution, a likelihood ratio test (LRT) is developed 
for detecting significant rate shifts at specific sites in proteins. 
A slow evolutionary rate at a given site indicates that this posi-
tion is functionally important for the protein. Conversely, a high 
evolutionary rate indicates that the position is not involved in an 
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important protein function. Therefore, a significant rate difference
between two sub-families at a given site means that the function 
of this position is probably different in the two groups.

Recent work takes into account the phylogeny and different 
substitution rates among amino acids to detect functional diver-
gence among paralogous genes. Gu (61, 62) has developed a quan-
titative measure for testing the function divergence within a family 
of duplicated genes. The method is based on measuring the 
decrease in mutation rate correlation between gene clusters of a 
gene family; the hidden Markov model (HMM) procedures allow 
the amino acid residues responsible for the functional divergence to 
be identified.

Evolutionary studies of proteins can be performed at the level of 
individual protein domains. First, this is because many proteins 
share only a subset of common domains; and second, because 
domains can be detected conveniently and with a reasonable 
accuracy using available collections of domain-specific sequence 
profiles (6). Comparisons of domain repertoires revealed both 
substantial similarities among different species, particularly with 
respect to the relative abundance of housekeeping domains, as 
well as major differences. The most notable manifestation of such 
differences is lineage-specific expansion of protein/domain fami-
lies, which probably points to unique adaptations. Furthermore, 
it has been demonstrated that more complex organisms, such as 
vertebrates, have a greater variety of domains and, in general, 
more complex domain architectures of proteins than simpler life 
forms (6). The quantitative comparative analysis of the frequency 
distributions of proteins or domains in different proteomes shows 
that these distributions appeared to fit the power law: P(i) = ci−y

where P(i) is the frequency of domain families, including exactly 
i members, c is a normalization constant and y is a parameter that 
typically assumes values between 1 and 3. Recent studies suggest 
that power laws apply to the distributions of a remarkably wide 
range of genome-associated quantities, including the number 
of transcripts per gene, the number of interactions per protein, 
the number of genes or pseudogenes in paralogous families, and 
others (63). Power law distributions are scale free; that is, the 
shape of the distribution remains the same regardless of scaling of 
the analyzed variable. In particular, scale-free behavior has been 
described for networks of diverse nature, for example, the meta-
bolic pathways of an organism or infectious contacts during an 
epidemic spread. Figure 13.5 shows the statistical properties 
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of random, scale-free, and hierarchical networks. The principal pat-
tern of network evolution that ensures the emergence of power 
distributions (and accordingly, scale-free properties) is preferential 
attachment, whereby the probability of a node acquiring a new 
connection increases with the number of this node’s connections. 
A simple model of evolution of the domain composition of pro-
teomes was developed by Karev, Koonin, and collaborators  with 
the following elementary processes: (1) domain birth (duplica-
tion with divergence), (2) death (inactivation and/or deletion), 
and (3) innovation (emergence from non-coding or non-globular
sequences or acquisition via horizontal gene transfer). This model 
of evolution can be described as a birth, death, and innovation 
model (BDIM; see Fig. 13.4a) and is based on the following 
independence assumption: (1) all elementary events are inde-
pendent of each other; and (2) the rates of individual domain 
birth (l) and death (d) do not depend on i (number of domains 
in a family). In a finite genome, the maximal number of domains 
in a family cannot exceed the total number of domains and, in 
reality, is probably much smaller; let N be the maximum pos-
sible number of domain family members. The model, described 
in Fig. 13.4b, considers classes of domain families that have 
only one common feature, namely the number of members. Let fi
be the number of domain families in the ith class, that is, families 
that are represented by exactly i domains in the given genome, 
i = 1,2,…,N. Birth of a domain in a family of class i results in the 

Fig. 13.4. (A) The layout of the Birth (3) + death (2) + innovation (1) model. (B) Domain 
dynamics and elementary evolutionary events under BDIM model. A dot is a domain; 
a circle represents a domain family.
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relocation of this family from class i to class i + 1 (decrease of 
fi and increase of fi + 1 by 1). Conversely, death of a domain in 
a family of class i relocates the family to class i − 1; death of a 
domain in class 1 results in the elimination of the corresponding 
family from the given genome, this being the only considered 
mechanism of family death. They consider time to be continu-
ous and suppose it very unlikely that more than one elemen-
tary event will occur during a short time interval; formally, the 
probability that more than one event occurs during an interval 
is very small.

Under these assumptions, the instantaneous rate at which a 
domain family leaves class i is proportional to the following simple 
BDIM, which describes the evolution of such a system of domain 
family classes:
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The equilibrium for the number of domain families in each 
size class is dfi(t)/dt = 0, whereas the equilibrium for the total 
number of families gives dFi(t)/dt = 0.

Fig. 13.5. Comparison of random, scale-free and hierarchical networks statistical properties.
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The solution of the model evolves to equilibrium, with a 
unique distribution of domain family sizes, fi(l/d)i/i; in particular, 
if l = d, this is fi 1/i. Thus, under the simple BDIM, if the birth 
rate equals death rate, the abundance of a domain class is inversely 
proportional to the size of the families in this class. When the 
observations do not fit this particular asymptotic (as observed in 
several studies on distributions of protein family sizes), a different, 

more general model needs to be developed. Let F t f ti
t

N

( ) ( )=
=
∑

1
be the total number of domain families at instant t; then dF(t)/dt = v
− d − d1f1(t). The system has an equilibrium solution f1,…,fN defined 
by the equality dfi(t)/dt = 0 for all i. Accordingly, there exists an 
equilibrium solution that we will designate Feq (the total number 
of domain families at equilibrium). At equilibrium, v = δ1f1, that 
is, the processes of innovation and death of single domains (more 
precisely, the death of domain families of class 1, i.e., singletons) are 
balanced. It has been proved that the power law asymptotic appears 
if, and only if, the model is balanced, that is domain duplication and 
deletion rates are asymptotically equal up to the second order. 
It has been further proved that any power asymptotic with the 
degree not equal to −1 can appear only if the hypothesis of inde-
pendence of the duplication/deletion rates on the size of a domain 
family is rejected. Specific cases of BDIMs, namely simple, linear, 
polynomial, and rational models, have been considered in detail 
and the distributions of the equilibrium frequencies of domain 
families of different size have been determined for each case. The 
authors have applied the BDIM formalism to the analysis of the 
domain family size distributions in prokaryotic and eukaryotic pro-
teomes and show an excellent fit between these empirical data and a 
particular form of the model; namely, the second-order balanced lin-
ear BDIM. Calculation of the parameters of these models suggests 
surprisingly high innovation rates, comparable to the total domain 
birth (duplication) and elimination rates, particularly for prokaryo-
tic genomes. In conclusion, the authors show that a straightforward 
model of genome evolution, which does not explicitly include selec-
tion, is sufficient to explain the observed distributions of domain 
family sizes, in which power laws appear as asymptotic. However, 
for the model to be compatible with the data, there has to be a 
precise balance among domain birth, death and innovation rates, 
and this is likely to be maintained by selection.

Eukaryotic genes usually contain introns, whereas bacterial genes 
are uninterrupted. Rzhetsky and co-workers analyzed the intron 
content of aldehyde dehydrogenase genes in several species in 
order to infer the validity of the introns-late or introns-early 
hypotheses (65). They defined an instantaneous transition rate 
matrix corresponding to a first-order Markov chain description of 
intron evolution. They considered three rate parameters, intron 
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insertion (l), deletion (m), and slippage (j). Consider a hypothetical 
gene with only two sites potentially hosting introns: There are 
four possible intron configurations: 00, 01, 10, and 11, where 
zero and one stand for intron absence and presence respectively; 
transition 00 → 01 corresponds to an intron insertion; transition 
01 → 00 is an intron deletion, and 01 → 10 is an intron slippage. 
The resulting instantaneous transition rate matrix, Q, shows all 
the configurations for a gene containing two sites with 2 a state 
of absence/presence of introns (the configuration order is, from 
left to right, 00, 01, 10, and 11):

Q =

−
− − −

− − −
−
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The matrix of transition probabilities between gene arrangement 
states during time t is computed numerically as matrix exponen-
tials (exp[Qt]) of the corresponding instantaneous transition rate 
matrix. Then the likelihood value can be calculated as described 
by Felsenstein (10). The authors found that, using this model, 
their data support the introns-late theory.

The human genome is particularly rich in homo- and di-nucleotide 
repeats (see Figs. 13.1 and 13.6) (6) and in families of interspersed, 
mobile elements hundreds of base pairs (bp) long, among which are 
the Alu families. A first approach in modeling microsatellite evolution 
would consider the statistics of separations between consecutive words 
to distinguish content-bearing terms from generic terms. In general, 
the former words tend to cluster themselves as a consequence of their 
high specificity (attraction or repulsion), while the latter ones have a 
tendency to be evenly distributed across the whole text. In order to 
eliminate the dependency on frequency for different words, it is con-
venient to analyze the sequences of normalized separations between 
consecutive words of length L, s = x(L)/�x(L)�. If homogeneous tracts 
were distributed at random in the genome, the inter-tract distribution 
PL(s) for words of length L would be: PL(s) = e−s.

As a consequence, we expect that non-specific words will run 
close to a Poisson law, whereas larger deviations should occur 
for highly specific content-bearing words. Such analysis may be 
implemented systematically in a quantitative fashion by studying 
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Fig. 13.6. Microsatellite length distribution in human genome.

since this is the simplest variable for characterizing a normal-
ized distribution and its fluctuations. For a Poisson distribu-
tion sL = 1, whereas if there is attraction sL > 1. In the case of 
repulsion among words one should expect sL < 1. Moreover, 
further interesting information may be gathered by studying 
the skewness g = á(s-s-)ñ3/s3/2 and kurtosis k = á(s-s-)4ñ/σ2 of 
the distribution PL(s). Interestingly, the same over-abundance 
of poly(X) tracts longer than a threshold of approximately 10 bp 
is found in all higher Eukaryotes analyzed. Moreover, H. sapiens
shows a lower abundance of poly(G) and poly(C) tracts as com-
pared with dog, chicken, and mouse genomes. A link between 
homo- and di-polymeric tracts and mobile elements recently has 
been highlighted. A statistical analysis of the genome-wide dis-
tribution of lengths and inter-tract separations of poly(X) and 
poly(XY) tracts in the human genome shows that such tracts are 
positioned in a non-random fashion, with an apparent periodic-
ity of 150 bases (Fig. 13.7) (66). In particular, the mobility of 
Alu repeats, which form 10% of the human genome, has been 
correlated with the length of poly(A) tracts located at one end 
of the Alu. These tracts have a rigid and non-bendable structure 
and have an inhibitory effect on nucleosomes, which normally 
compact the DNA.

Interestingly, all mobile elements, such as SINEs and LINEs, 
and processed pseudogenes, contain A-rich regions of different 
length. In particular, the Alu elements, present exclusively in 
the primates, are the most abundant repeat elements in terms 
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Fig. 13.7. The 150 and 300 bp periodic patterns found in analyzing the distances 
between poly(A)-poly(T) tracts.

of copy number (>106 in the human genome) and account for 
>10% of the human genome. They are typically 300 nucleotides
in length, often form clusters, and are mainly present in non-
coding regions. Higher Alu densities were observed in chromo-
somes with a greater number of genes and vice versa. Alus have a 
dimeric structure and are ancestrally derived from the gene 7SL 
RNA. They amplify in the genome by using a RNA polymerase 
III-derived transcript as template, in a process termed retroposition.
The mobility is facilitated by a variable-length stretch of an A-rich 
region located at the 3′ end.

Although all Alu elements have poly(A) stretches, only a 
very few are able to retropose. Therefore, the mere presence of 
a poly(A) stretch is not sufficient to confer on an Alu element 
the ability to retropose efficiently. However, the length of the A 
stretch correlates positively with the mobility of the Alu.

The abundance of poly(X) and poly(XY) tracts shows an 
apparent correlation with organism complexity. For exam-
ple, simple repeats are absent in viruses, rather rare in bacte-
ria and low eukaryotes and very abundant in high vertebrate 
genomes.
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Chapter 14

Inferring Trees

Simon Whelan

Abstract

Molecular phylogenetics examines how biological sequences evolve and the historical relationships 
between them. An important aspect of many such studies is the estimation of a phylogenetic tree, which 
explicitly describes evolutionary relationships between the sequences. This chapter provides an introduc-
tion to evolutionary trees and some commonly used inferential methodology, focusing on the assump-
tions made and how they affect an analysis. Detailed discussion is also provided about some common 
algorithms used for phylogenetic tree estimation. Finally, there are a few practical guidelines, including 
how to combine multiple software packages to improve inference, and a comparison between Bayesian 
and maximum likelihood phylogenetics.

Key words: Phylogenetic inference, evolutionary trees, maximum likelihood, parsimony, distance 
methods, review.

Phylogenetics and comparative genomics use multiple sequence 
alignments to study how the genetic material changes over evo-
lutionary time and draw biologically interesting inferences. The 
primary aim of many studies, and an important byproduct of 
others, is finding the phylogenetic tree that best describes the 
evolutionary relationship of the sequences. Trees have proved 
useful in many areas of molecular biology. In studies of patho-
gens, they have offered a wealth of insights into the interaction 
between viruses and their hosts during evolution. Pre-eminent 
among these have been studies on HIV in which, for example, 
trees were crucial in demonstrating that HIV was the result of at 
least two different zoonoses from chimpanzees (1). Trees have 
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also provided valuable insights in molecular and physiological 
studies, including how the protein repertoire evolved (2, 3),
genome evolution (4, 5), and the development of taxonomic 
classification and species concepts (6, 7). Accurate reconstruc-
tion of evolutionary relationships is also important in studies in 
which the primary aim is not tree inference, such as investigating 
the selective pressures acting on proteins (see Chapter 15) or 
the identification of conserved elements in genomes (8). Failure 
to correctly account for the historical relationship of sequences 
can lead to inaccurate hypothesis testing and impaired biological 
conclusions (9).

Despite the importance of phylogenetic trees, obtaining an 
accurate estimate of one is not a straightforward process. There 
are many phylogenetic software packages available, each with 
unique advantages and disadvantages. An up-to-date list of such 
packages is held at the URL: http://evolution.genetics.wash-
ington.edu/phylip/software.html. This chapter aims to provide 
an introductory guide to enable users to make informed deci-
sions about the phylogenetic software they use, by describing 
what phylogenetic trees are, why they are useful, and some of the 
underlying principles of phylogenetic inference.

Phylogenetic trees make implicit assumptions about the data. 
Most importantly, these include that all sequences share a com-
mon ancestor, and that sequences evolving along all branches in 
the tree evolve independently. Violations of the former assump-
tion occur when unrelated regions are included in the data. This 
occurs, for example, when only subsets of protein domains are 
shared between sequences or when data have entered the tree 
from other sources, such as sequence contamination, lateral gene 
transfer, or transposons. Violations of the second assumption 
occur when information in one part of a tree affects sequence in 
another. This occurs in gene families under gene conversion or 
lateral gene transfer. Before assuming a bifurcating tree for phy-
logenetic analyses, one should try to ensure that these implicit 
assumptions are not violated.

The trees estimated in phylogenetics usually come in 
two flavors, rooted and unrooted, differing in the assump-
tions they make about the most recent common ancestor of 
the sequences, the root of the tree. Knowing the root of the 
tree enables the order of divergence events to be determined, 
which is valuable, for example, when investigating the evolu-
tion of phenotypic traits by examining their location on a tree. 

2. Underlying 
Principles
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Rooted trees explicitly identify the location of this ancestor 
(Fig. 14.1A), whereas unrooted trees do not (Fig. 14.1B). 
In practice, the majority of studies use unrooted trees and, if 
rooting is required, it can be inferred through the use of an 
outgroup (Fig. 14.1B).

To discriminate between trees, a score function is required that 
quantifies how well a phylogenetic tree describes the observed 
sequences. The last 40 years have led to the proposal of many 
different scoring functions, summarized briefly as statistical, parsi-
mony, and distance-based. There has been considerable debate in 
the literature over which methodology is the most appropriate for 
inferring trees. A brief discussion of each is provided in the follow-
ing, although a full discussion is beyond this chapter’s scope (but 
see Note 1; see also (6, 9–11) for an introduction).

Statistical methods are currently in the ascendancy and use 
likelihood-based scoring functions. Likelihood is a measure pro-
portional to the probability of observing the data given the 
parameters specifying an evolutionary model and branch lengths 
in the tree. These describe how sequences change over time and 
how much change has occurred on particular lineages, respec-
tively (see Chapter 13) (9). Statistical methods come in two 
varieties: maximum likelihood (ML), which searches for the tree 
that maximizes the likelihood function, and Bayesian inference, 
which samples trees in proportion to the likelihood function 
and prior expectations. The primary strength behind statistical 
methods is that they are based on established and reliable meth-
odology that has been applied to many areas of research, from 
classical population genetics to modeling world economies (12).
They are also statistically consistent: Under an accurate evolu-
tionary model they tend to converge to the “true tree” as longer 
sequences are used (13, 14). This, and other associated properties,
enables statistical methodology to produce high-quality phylo-
genetic estimates with a minimum of bias under a wide range of 
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Fig. 14.1. Two common forms of bifurcating tree are used in phylogenetics. (A) Rooted 
trees make explicit assumptions about the most recent common ancestor of sequences 
and can imply directionality of the evolutionary process. (B) Unrooted trees assume a 
time-reversible evolutionary process. The root of sequences 1–6 can be inferred by 
adding an outgroup.
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conditions. The primary criticism of statistical methods is that 
they are computationally intensive. Progress in phylogenetic soft-
ware and  computing resources is steadily meeting this challenge.

Parsimony counts the minimum number of changes required 
on a tree to describe the observed data. Parsimony is intuitive to 
understand and computationally fast, relative to statistical methods. 
It is often criticized for being statistically inconsistent: Increasing 
sequence length in certain conditions can lead to greater confi-
dence in the wrong tree. Parsimony does not include an explicit 
evolutionary model (although see 15). In some quarters, this is 
seen as an advantage because of a belief that evolution cannot be 
modeled (16). Others view this as a disadvantage because it does 
not account for widely acknowledged variation in the evolutionary 
process. In practice, parsimony may approximate statistical meth-
ods when the branch lengths on a tree are short (15).

Distance-based criteria use pairwise estimates of evolution-
ary divergence to infer a tree, either by an algorithmic clustering 
approach (e.g., neighbor joining) (17) or assessing the fit of the 
distances to particular tree topologies (e.g., least-squares) (18).
Distance methods are exceptionally quick: A phylogeny can be 
produced from thousands of sequences within minutes. When an 
adequate evolutionary model is used to obtain distances, the meth-
odology can be consistent, although it is probable that it converges 
to the “true tree” at a slower rate than full statistical methods. 
An additional weakness of distance methods is that they use only 
pairwise comparisons of sequences to construct a tree. These com-
parisons are long distances relative to the branches on a tree, and 
are consequently harder to estimate and prone to larger variances. 
In contrast, statistical methods estimate evolutionary distances on 
a branch-by-branch basis through a tree, exploiting evolutionary 
information more efficiently by using all sequences in a tree to inform 
about branch lengths and reduce the variance of each estimate. 
Purely algorithmic distance methods, such as neighbor-joining 
and some of its derivatives, do not use a statistical measure to fit 
distances to a tree. The estimate is taken as the outcome of a pre-
defined algorithm, making it unclear what criterion is used to esti-
mate the tree. In practice, however, algorithmic methods appear to 
function as good approximations to other more robust methods, 
such as least-squares or the minimum-evolution criterion.

The effective and accurate estimation of trees remains difficult, 
despite their wide-ranging importance in experimental and com-
putational studies. It is difficult to find the optimal tree in statistical 
and parsimony methods because the size of tree space rapidly 
increases with the number of sequences, making an exhaustive 
analysis impractical for even modest numbers of sequences. For 50 
sequences, there are approximately 1076 possible trees, a number 
comparable to the estimated number of atoms in the observable 
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universe. This necessitates heuristic approaches for searching tree 
space that speed up computation, usually at the expense of accu-
racy. The phylogenetic tree estimation problem is unusual and 
there are few well-studied examples from other research disci-
plines to draw on for heuristics (20). Consequently, there has 
been a lot of active research into methodology to find the optimal 
tree using a variety of novel heuristic algorithms. Many of these 
approaches progressively optimize the tree estimate by iteratively
examining the score of nearby trees and making the highest scoring 
the new best estimate, and stopping when no further improve-
ments can be found. The nature of the heuristics mean there is 
often no way of deciding whether the newly discovered optimum 
is the globally best tree or whether it is one of many other local 
optima in tree space (although see (19), for a description of a 
Branch and Bound algorithm). Through acknowledging this 
problem and applying phylogenetic software to its full potential 
it is possible to produce good estimates of trees that exhibit many 
characteristics of a sequence’s evolutionary history.

The majority of software for inferring trees results in a single (point) 
estimate of the tree that best describes the evolutionary relationships 
of the data. This is ultimately what most researchers are interested 
in and what is usually included in any published work. In order to 
obtain the best possible estimate it is valuable to understand how 
phylogenetic software functions and the strengths and weaknesses 
of different approaches (see Note 2). Phylogenetic heuristics can 
be summarized by the following four-step approach:
 1. Propose a tree.
 2. Refine the tree using a traversal scheme until no further 

improvement found.
 3. Check stopping criterion.
 4. Resample from tree space and go to 2.
Not all four steps are employed by all phylogenetic software. 
Many distance methods, for example, use only step 1, whereas 
many others stop after refining a tree estimate.

Initial tree proposal is fundamental to all phylogenetic tree 
estimation and there is no substitute for a good starting topology 
when inferring trees. The most popular approach to producing an 
initial tree is to use distance-based clustering methods. This is usually 
chosen for computational speed, so purely  algorithmic approaches 
are common. Occasionally, more sophisticated approaches, such 

3. Point Estimation 
of Trees
3. Point Estimation 
of Trees

3.1. Proposing an 
Initial Tree
3.1. Proposing an 
Initial Tree



292 Whelan

as quartet puzzling (21), are used. These can be highly effective 
for smaller datasets, but often do not scale well to larger numbers 
of sequences. An alternative approach is to choose a tree based 
on external information, such as the fossil record or prior studies, 
which can be appropriate when examining the relationship of well-
characterized species and/or molecules.

An alternative, widely used approach is to use sequence-based 
clustering algorithms (9, 19). These are similar to distance-based 
methods, but instead of constructing a tree using pairwise dis-
tances, they use something akin to full statistical or parsimony 
approaches. The two most popular are the stepwise addition 
and star-decomposition algorithms (Fig. 14.2). Stepwise addi-
tion (Fig. 14.2A) starts with a tree of three sequences and adds 
the remaining sequences to the tree in a random order to the 
location that maximizes the scoring criterion. The order that 
the sequences are added to the tree can affect the final proposed 
topology, also allowing a random order of addition to be used 
as a re-sampling step. Star-decomposition (Fig. 14.2B) starts 
with all of the sequences related by a star phylogeny: a tree with 
no defined internal branches. The algorithm progressively adds 
branches to this tree by resolving multi-furcations (undefined 
regions of a tree) that increase the scoring criteria by the largest 
amount. Providing there are no tied optimal scores the algorithm 
is deterministic, resulting in the same proposed tree each time.

Refining the tree estimate is the heuristic optimization step. The 
tree is improved using an iterative procedure that stops when no 
further improvement can be found. For each iteration, a traver-
sal scheme is used to move around tree space and propose a set 
of candidate trees from the current tree estimate. Each tree is 

3.2. Refining the Tree 
Estimate
3.2. Refining the Tree 
Estimate

Add Seq4 to branch

 leading to Seq3

Seq1

Seq2

Seq3?

?

?

Seq4

Add Seq5 to branch

 leading to Seq2
Seq4

Seq1

Seq2

Seq3

?

?

?

?

?
Seq5

Seq4

Seq1

Seq2

Seq3

Seq5

A

Seq1

Seq2

Seq3
Seq4

Seq5

Seq1

Seq4

Seq2
Seq5

Seq3

Add branch separating

 Seq2 and Seq5
Seq4

Seq1

Seq2

Seq3

Seq5

Add branch separating

 Seq3 and Seq4

B

Fig. 14.2. Sequence-based clustering algorithms are frequently used to propose trees. (A) Stepwise addition progres-
sively adds sequences to a tree at a location that maximizes the score function. (B) Star-decomposition starts with a 
topology with no defined internal branches and serially adds branches that maximize the score function. For example, in 
the first step branches could be added that separate all possible pairs of sequences.
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assessed using the score function and one (or more) trees are 
chosen as the starting point for the next round of iteration. This is 
usually the best tree, although some approaches, such as Bayesian 
inference and simulated annealing, accept suboptimal trees (see 
the following). The popular traversal schemes discussed in the 
following share a common feature: they propose candidate trees 
by making small rearrangements on the current tree, examining 
each internal branch of a tree in turn and varying the way they 
propose trees from it. Three of the most popular methods are, in 
order of complexity and the number of candidate trees they pro-
duce: nearest neighbor interchange (NNI), subtree pruning and 
regrafting (SPR), and tree bisection and reconnection (TBR).

NNI (Fig. 14.3A) breaks an internal branch to produce four 
subtrees. Each of the three possible combinations for arranging 
these subtrees is added to the list of candidate trees. SPR (Fig.
14.3B) is a generalization of NNI that generates candidate trees 
by breaking the internal branch under consideration and pro-
posing new trees by putting together the resultant subtrees in 
different ways, one of which is the original topology. The set of 
candidate trees is generated by regrafting the broken branch of 
subtree A to each of subtree B’s branches; Fig. 14.3B shows 

Nearest Neighbour 
Interchange

choose one of three 
possible rearrangements

Step 2:

Subtree Pruning and 
Regrafting

A B

Take original topologyStep 1:Take original topologyStep 1:

Break branch under 
consideration

Step 2:

Attach subtree       to any 
branch in other subtree

Step 3:

Take original topologyStep 1:

Break branch under 
consideration

Step 2:

Connect any branch from 
one subtree with any 
branch from the other

Step 3:

Tree Bisection and 
Reconnection

C

Fig. 14.3. Three related schemes for traversing tree space when searching for an optimal tree. (A) Nearest Neighbor 
Interchange: an internal branch is broken and the three potential arrangements of the four subtrees are examined. (B)
Subtree Pruning and Regrafting: an internal branch is removed and all ways of regrafting one of the resulting subtrees 
to the other are examined. Dotted arrows demonstrate some potential regrafting points. (C) Tree Bisection and Recon-
nection: an internal branch is removed and all possible ways of reconnecting the subtrees are examined. Dotted lines 
demonstrate potential reconnection points.
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three example regraftings (dotted arrows). To complete the set 
of candidate trees the order of the subtrees is reversed and the 
process repeated, this time regrafting subtree B to each of subtree 
A’s branches. TBR is similar to SPR, but generalizes it further 
to produce even more candidate trees per branch. When TBR 
breaks a branch, all possible ways of joining the two subtrees are 
added to the list. Some example reconnections are illustrated in 
Fig. 14.3C as dotted lines. NNI, SPR, and TBR are hierarchical 
in structure because the set of trees proposed by the more com-
plex approach completely contains those proposed by the simpler 
approach (22). This hierarchical structure is not general: There 
are other approaches based on removing multiple branches from 
a tree that do not follow this pattern, but these are not widely 
implemented (23, 24).

The advantages and disadvantages of these methods emerge 
from the number of candidate trees they produce. NNI pro-
duces a modest number of proposed trees, growing linearly 
with the number of sequences in the phylogeny. This limits its 
effectiveness by allowing only small steps in tree space and a greater 
susceptibility to local optima than more expansive schemes. The 
number of trees proposed by SPR rises rapidly as the number 
of sequences increases, making it computationally impractical for 
large numbers of sequences, although the greater number of can-
didate trees results in a larger step size and fewer local optima. 
Innovations based around SPR limit the number of candidate 
trees by bounding the number of steps away that a subtree can 
move from its original position. The subtree in Fig. 14.3B, for 
example, could be bounded in its movement to a maximum of 
two branches (all branches not represented by a triangular subtree 
in the figure). Each branch has a maximum number of subtrees it 
can produce, returning a linear relationship between the number 
of candidate trees and sequences. This approach offers a prom-
ising direction for future algorithm research, but currently is 
not widely implemented (25, 26). The characteristics of TBR 
are similar to SPR, but amplified because the number of candi-
date topologies per branch increases even more rapidly with the 
number of sequences.

Many phylogenetic software packages do not resample tree 
space and stop after a single round of refinement. When resa-
mpling is used, a stopping rule is required. These are usually 
arbitrary, allowing only a pre-specified number of resamples 
or refinements. A recent innovation offers an alternative based 
on how frequently improvements in the overall optimal tree 
are observed. This dynamically estimates the number of itera-
tions required before no further improvement in tree topol-
ogy will be found and stops the algorithm when this has been 
exceeded (27).

3.3. Stopping Criteria3.3. Stopping Criteria
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Sampling from one place in tree space and refining still may not 
find the globally optimal tree. The goal of resampling from tree 
space is to expand the area of tree space searched by the heuristic 
and uncover new, potentially better optima. This is achieved by 
starting the refinement procedure from another point in tree 
space. This approach was originally used in some of the earliest 
phylogenetic software (28), but is only lightly studied relative 
to improvements in the refinement methodology. Three of the 
many possible resampling schemes are discussed here: uniform 
resampling, stepwise addition, and importance quartet puzzling 
(IQP) (27).

Uniform resampling is the simplest resampling strategy and 
the probability of picking each possible tree is one divided by 
the total number of trees. Although rarely used in practice, its 
deficiencies are edifying to the tree estimation problem. Each 
optimum has an area of tree space associated with it that will lead 
back to it during the refinement process, referred to as a center 
of attraction. In the majority of phylogenetic problems there are 
potentially large numbers of optima and the centers of attraction 
can be relatively small. Uniform sampling is prone to ending up 
in poor regions of tree space where nearby optima are unlikely 
to be particularly high. Finding centers with high optima can be 
difficult and requires an intelligent sampling process.

Stepwise addition with random sequence ordering is a viable 
resampling strategy because adding sequences in a different order 
is liable to produce a different, but equally good, starting tree. 
Both stepwise addition and uniform resampling effectively throw 
away information from the current best estimate of a tree. IQP 
keeps some of this information and can be viewed as a partial 
stepwise addition process. It resamples by randomly removing a 
number of sequences from the current best tree, then consecu-
tively adding them back to the tree in a random order using the 
IQP algorithm. This identifies good locations to insert sequences 
by examining a set of four-species subtrees that all include the 
newly added sequence (see ref. 27 for more details). IQP resam-
pling has been demonstrated to be reasonably effective for tree 
estimation when coupled with NNI.

An alternative approach to this purist resampling is to com-
bine two or more refinement heuristics, the quicker of which 
(e.g., NNI) is used for the refinement step, and an alternative 
with a slower more expansive scheme (e.g., TBR) is used rarely 
to make larger steps in tree space.

Other popular approaches to phylogenetic tree estimation 
include genetic algorithms, simulated annealing (SA), and super-
tree reconstruction. Genetic algorithms are a general approach 
for numerical optimization that use evolutionary principles to 
allow a population of potential trees to adapt by improving 
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their fitness (score function) according to a refinement scheme 
defined by the software designer. As the algorithm progresses, 
a proxy for natural selection weeds out trees with a lower fit-
ness, and better trees tend to become more highly represented. 
After a period of time, the algorithm is stopped and the best 
topology discovered is the point estimate. The construction of 
genetic algorithms is very much an art and highly dependent on 
the designer’s ability to construct a coherent and effective fit-
ness scale, and the application of quasi-natural selection. Some 
approaches for estimating trees using genetic algorithms have 
been noticeably successful (29, 30).

SA bases its optimization strategy on the observation that 
natural materials find their optimal energy state when allowed 
to cool slowly. Usual approaches to SA propose a tree at random 
from a traversal scheme, and the probability of accepting this as 
the current tree depends on whether it improves the score func-
tion. A tree that improves the score is accepted. Trees with lower 
scores are accepted with a probability related to the score differ-
ence between the current and new tree, and a “heat”’ variable 
that decreases slowly during time. This random element allows 
the optimization process to move between different centers of 
attraction. SA starts “hot,” frequently accepting poor trees and cov-
ering large tracts of tree space. As it gradually “cools,” it becomes 
increasingly focused on accepting only trees with a higher score 
and the algorithm settles on a best tree. SA has proved very useful 
in other difficult optimization problems, but has yet to be widely 
used in phylogenetics (but see (31–33)).

In studies in which the phylogeny is of prime importance, it is 
necessary to attach a degree of confidence to the point estimate. 
This typically involves using computer simulations to generate 
new datasets from features of the original. The underlying prin-
ciple is that simulated data represent independent draws from 
the same distribution over tree space (and evolutionary model 
space) as the process that generated the real data. This allows an 
assessment of the variability of the estimate and the construction 
of a confidence interval. This form of simulation is often known 
as a bootstrap (34), after the phrase “pulling oneself up by the 
bootstraps,” as it is employed when a problem is too difficult 
for classical statistics to solve. There are two broad approaches 
to bootstrap data widely used in phylogenetics: non-parametric 
bootstrapping and parametric bootstrapping. Figure 14.4
contains examples of all the methods discussed in the following.
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Estimates
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The non-parametric bootstrap is applicable to all methods of 
phylogenetic inference. It assumes that the probability distribu-
tion of observed columns in the original sequence alignment 
is representative of the complex and unknown evolutionary 
process. In other words, it assumes that if evolution had pro-
duced multiple copies of the original data, the average frequency 
of each alignment column would be exactly that observed in the 
original data. This philosophy underpins the simulation strategy. 
Sampling with replacement is used to produce a simulated data-
set by repeatedly drawing from the original data to make a new 
dataset of suitable length. Each column in the original alignment 
has an equal probability of contributing to the simulated data. 
This approach allows non-parametric bootstrapping to encom-
pass some of the complexities of sequence evolution that are not 
easily modeled, such as complex substitution patterns and rate 
variation, but introduces a finite sampling problem: Only a small 
proportion of all possible data columns could possibly be repre-
sented in the real data. For a complete DNA alignment covering 
20 species there are ∼1012 possible data columns (four DNA bases 
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raised to the 20th power). It would be unreasonable to expect 
any real dataset to provide a detailed representation of the prob-
ability distribution over this space.

The most ubiquitous non-parametric bootstrap test of confi-
dence is simple bootstrapping, which assesses confidence in a tree 
on a branch-by-branch basis (35). Tree estimates are obtained for 
a large number of simulated datasets. Bootstrap values are placed 
on branches of the original point estimate of the tree as the fre-
quency that implied bipartitions are observed in trees estimated 
from the simulated data. This is useful for examining the evidence 
for particular subtrees, but becomes difficult to interpret for a 
whole tree because it hides information about how frequently 
other trees are estimated. This can be addressed by describing 
the bootstrap probability of different trees. In Fig. 14.4, the two 
bootstrap values are expanded to five bootstrap probabilities and, 
using hypothesis testing, three of the five can be rejected. These 
forms of simple bootstrapping are demonstrably biased and often 
place too much confidence in a small number of trees (36, 37),
but due to their simplicity they remain practical and useful tools 
for exploring confidence in a tree estimate.

Two other useful forms of the non-parametric bootstrap are 
employed in the Shimodaira-Hasegawa (SH) (38) and Approxi-
mately Unbiased (AU) (39) tests. These tests require a list of 
candidate trees to be proposed, representing a set of alternate 
hypotheses, such as species grouping, and usually containing the 
optimal tree estimate. The tests form a confidence set by calculat-
ing a value related to the probability of each tree being the best 
tree, and then rejecting those that fall below the critical value. A well-
chosen list allows researchers to reject and support biologically 
interesting hypotheses based on tree shape, such as monophyly 
and gene duplication. Both tests control the level of type I (false-
positive) error successfully. In other words, the confidence inter-
val is conservative and does not place unwarranted confidence in a 
small number of trees. This was a particular problem for the tests’ 
predecessor, the Kishino-Hasegawa (KH) test (40) that, due to 
a common misapplication, placed undue confidence in a small 
number of trees. The AU test is constructed in a subtly different 
manner than the SH test, which removes a potential bias and 
increases statistical power. This allows the AU test to reject more 
trees than the SH test and produce tighter confidence intervals 
(demonstrated in Fig. 14.4).

The parametric bootstrap is applicable to statistical methods of 
phylogenetic inference and is widely used to compare phyloge-
netic models as well as trees. The simulation is performed by 
generating new sequences and allowing them to evolve on a tree 
topology, according to the parameters in the statistical model esti-
mated from the original data, such as replacement rates between 
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bases/residues and branch lengths. This completely defines the 
probability distribution over all possible data columns, even those 
not observed in the original data, which avoids potential prob-
lems introduced by sampling in the non-parametric bootstrap. 
This introduces a potential source of bias because errors in the 
evolutionary model and its assumptions are propagated in the 
simulation. As evolutionary models become more realistic and 
as the amount of data analyzed grows, the distributions across 
data columns produced by parametric and non-parametric boot-
strapping may be expected to become increasingly similar. When 
the model is sufficiently accurate and the sequences become infi-
nitely long the two distributions may be expected to be the same, 
although it is unclear whether anything close to this situation 
occurs in real data.

The most popular test using the parametric bootstrap is the 
Swofford-Olsen-Waddell-Hillis (SOWH) (19) test. This also 
addresses the comparison of trees from a hypothesis testing per-
spective, by constructing a null hypothesis (HN) of interest and 
an alternative, more general hypothesis (HA). Figure 14.4 dem-
onstrates this through a simple test of monophyly. A likelihood 
is calculated under the null hypothesis of monophyly, which 
restricts tree space by enforcing that a subset of sequences always 
constitutes a single clade (group) on a tree, in this case S2 and 
S5 always being together. In practice this means performing a 
tree search on the subset of tree space in which the clade exists. 
A second likelihood is calculated under the alternative hypothesis 
of no monophyly, which allows tree estimation from the entirety 
of tree space. The SOWH test examines the improvement in 
likelihood, d, observed by allowing the alternative hypothesis. 
To perform a statistical test, d needs to be compared with some 
critical value on the null distribution. No standard distribution 
is appropriate and parametric bootstrapping is used to estimate 
it, with the parameters required for the simulation taken from 
HN. Each simulated dataset is assessed under the null and alter-
nate hypotheses and the value of d is taken as a sample from the 
null distribution. When repeated large numbers of times, this 
produces a distribution of d that is appropriate for significance 
testing. In the example, the observed value of d falls outside the 
95% mark of the distribution, meaning that the null hypothesis 
of monophyly is rejected. This example demonstrates some of 
the strengths and weaknesses of parametric bootstrapping. The 
SOWH test does not require a limited list of trees to be defined 
because hypotheses can be constructed by placing simple 
restrictions on tree space. This allows the SOWH test to assess 
complex questions that are not otherwise easily addressed, but 
the computational burden of each simulated dataset may be as 
extreme as the original dataset. This can make large numbers of 
bootstrap replicates unfeasible.
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Both of the discussed bootstrapping approaches have theoretical
and practical limitations. The primary practical limitation of both 
bootstrapping methods is that they are computationally very 
intensive, although there are many texts detailing computational 
approximations to make them computationally more efficient 
(19, 41). The theoretical limitations of current bootstrapping 
methods stem from the simplifying assumptions they make when 
describing sequence evolution. These, most seriously, include 
poor choice of evolutionary model, neglecting insertion-dele-
tion mutations (indels), and the effect of neighboring sites on 
sequence evolution. In statistical methods, a poor choice of model 
can adversely affect all forms of bootstrapping. In non-parametric 
bootstrapping, inaccuracies in the model can lead to biases in the 
tree estimate that may manifest as overconfidence in an incorrect 
tree topology. Modeling errors in parametric bootstrapping may 
result in differences between the probability distribution of col-
umns generated during the simulation and the distribution of the 
“true” evolutionary process, which may make the simulated dis-
tribution inappropriate for statistical testing. The relative effects 
of model mis-specification on bootstrapping are generally poorly 
characterized and every care should be taken when choosing a 
model for phylogenetic inference (see Chapter 16).

Indels are common mutations that can introduce alignment 
errors, which can impact phylogenetic analysis (see Chapters 7
and 15). These effects are generally poorly characterized and, 
to their detriment, the majority of phylogenetic methodolo-
gies ignore them. The context of a site in a sequence may have 
significant effect on its evolution, and there are numerous well-
characterized biological dependencies that are not covered by 
standard simulation models. In vertebrate genomes sequences, 
for example, methylation of the cytosine in CG dinucleotides 
results in rapid mutation to TG. Non-parametric bootstrap tech-
niques using block resampling (42) or the use of more complex 
evolutionary models (e.g., hidden Markov models) (43) in the 
parametric bootstrap would alleviate some of these problems, but 
they are rarely used in practice.

Bayesian inference of phylogenetic trees is a relatively recent 
innovation that simultaneously estimates the tree and the 
parameters in the evolutionary model, while providing a meas-
ure of confidence in those estimates. The following provides 
a limited introduction to Bayesian phylogenetics, highlighting 
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some of the principles behind the methods, its advantages, dis-
advantages, and similarities to other methodology. More com-
prehensive guides to Bayesian phylogenetics can be found in 
Huelsenbeck et al. (44), Holder and Lewis (45), and online in 
the documentation for the BAMBE and MrBayes software.
The major theoretical difference between Bayesian inference 
and likelihood approaches is that the former includes a factor 
describing prior expectations about a problem (see Note 3). 
More precisely, the prior is a probability distribution over all 
parameters, including the tree and model, describing how fre-
quently one would expect values to be observed before evalu-
ating evidence from the data. Bayesian inference examines the 
posterior distribution of the parameters of interest, such as the 
relative probabilities of different trees. The posterior is a prob-
ability distribution formed as a function of the prior and likeli-
hood, which represents the information held within the data. 
When Bayesian inference is successful, a large dataset would 
ideally produce a posterior distribution focused tightly around 
a small number of good trees.

In order to make an inference about the phylogenetic tree, the 
posterior distribution needs to be processed in some way. To 
obtain the posterior probability of trees, the parameters not 
of direct interest to the analysis need to be integrated out of 
the posterior distribution. These are often referred to as “nui-
sance parameters,” and include components of the evolutionary 
model and branch lengths. A common summary of the list of 
trees that Bayesian phylogenetics produces is the maximum a
posteriori probability (MAP) tree, which is the tree that contains 
the largest mass of probability in tree space. The integration 
required to obtain the MAP tree is represented in the transition 
from left to right in the posterior distribution section of Fig. 
14.5, where the area under the curve for each tree on the left 
equates to the posterior probability for each tree on the right. 
The confidence in the MAP tree can be estimated naturally from 
the posterior probabilities and requires no additional computa-
tion. In Bayesian parlance, this is achieved by constructing a 
credibility interval, which is similar to the confidence interval 
of classical statistics, and is constructed by adding trees to the 
credible set in order of decreasing probability. For example, 
the credibility interval for the data in Fig. 14.5 would be con-
structed by adding the trees in the order of C, A, and B. The 
small posterior probability contained in B means that it is likely 
to be rejected from the credibility interval. Readers should be 
aware that there are other equally valid ways of summarizing 
the results of a Bayesian analysis, including the majority rule 
consensus tree (46).
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In phylogenetics, a precise analysis of the posterior distribution 
is usually not computationally possible because it requires a sum-
mation across all possible tree topologies. Markov chain Monte 
Carlo (MCMC) rescues Bayesian inference by forming a series 
(chain) of pseudo-random samples from the posterior distribu-
tion as an approximation to it. Understanding how this sampling 
works is useful to further explain Bayesian tree inference. A sim-
plified description of the MCMC algorithm for tree estimation 
follows:
 1. Get initial estimate of tree.
 2. Propose a new tree (often by methods similar to traversal 

schemes in Section 3.2.).
 3. Accept the tree according to a probability function.
 4. Go to Step 2.
The options for obtaining an initial tree estimate: (1) are the same 
as for point estimation, although a random starting place can also 
be a good choice because starting different MCMC chains from 
very different places can be useful for assessing their convergence 
(see the following). The tree proposal mechanism in (2) needs to 
satisfy at least three criteria: (a) the proposal process is random; 
(b) every tree is connected to every other tree, and (c) the chain 
does not periodically repeat itself. The necessity for (a) and (b) 
allows the chain potential access to all points in tree space, which 
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Fig. 14.5. A schematic of Bayesian tree inference. The prior (left) contains the informa-
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model before seeing the data. During Bayesian inference, this is combined with the 
information about the tree and model parameter values held in the original data (right)
to produce the posterior distribution. These may be summarized to provide estimates of 
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in principle allows complete sampling if the chain is allowed to 
run long enough. The final point (c) is a technical requirement 
that ensures the chain does not repeatedly visit the areas of tree 
space in the same order; it is aperiodic. The ability of MCMC to 
effectively sample tree space is highly dependent on the proposal 
scheme, and the most popular schemes are similar to those used 
in point estimation (see the preceding).

The probability of a new tree being accepted (Step 3) is the 
function that enables the MCMC algorithm to correctly sample 
from the posterior distribution. The probability of acceptance 
depends on the difference in likelihood scores of the current and 
new tree, their chances of occurring under the prior, and an addi-
tional correction factor dependent on the sampling approach. A 
good sampling scheme coupled with this acceptance probability 
enables the chain to frequently accept trees that offer an improve-
ment, whereas occasionally accepting mildly poorer trees. Trees 
with very low posterior probability are rarely visited. The overall 
result is that the amount of time a chain spends in regions of tree 
space is directly proportional to the posterior distribution. This 
allows the posterior probability of trees to be easily calculated 
as the frequency of time that the chain spends visiting different 
topologies.

The number of samples required for MCMC to successfully 
sample the posterior distribution is dependent on two factors: 
convergence and mixing. A chain is said to have converged when 
it begins to accurately sample from the posterior distribution, 
and the period before this happens is called burn in. The mixing 
of a chain is important because it controls how quickly a chain 
converges and its ability to sample effectively from the posterior 
distribution afterward. When a chain mixes well, all trees can 
be quickly reached from all other trees and MCMC is a highly 
effective method. When mixing is poor, the chain’s ability to 
sample effectively from the posterior is compromised.

It is notoriously difficult to confirm that the chain has con-
verged and is successfully mixing, but there are diagnostic tools 
available to help. A powerful way to examine these conditions is 
to run multiple chains and compare them. If a majority of chains 
starting from substantially different points in tree space concen-
trate their sampling in the same region, it is indicative that the 
chains have converged. Evidence for successful mixing can be 
found by comparing samples between converged chains. When 
samples are clearly different, it is strong evidence that the chain 
is not mixing well. These comparative approaches can go awry; 
for example, when a small number of good tree topologies with 
large centers of attraction are separated by long and deep troughs 
in the surface of posterior probabilities. If by chance all the chains 
start in the same center of attraction, they can misleadingly 
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appear to have converged and mixed well even when they have 
poorly sampled the posterior. This behavior has been induced for 
small trees under artificial mis-specifications of the evolutionary 
model, although the general prevalence of this problem is cur-
rently unknown.

An alternative diagnostic is to examine a plot of the likelihood 
and/or model parameter values, such as rate variation param-
eters and sum of branches in the tree, against sample number. 
Before convergence these values may tend to show discernible 
patterns of change. The likelihood function, for example, may 
appear on average to steadily increase, as the chain moves to pro-
gressively better areas of tree-space. When the chain converges, 
these values may appear to have quite large random fluctuations 
with no apparent trend. Fast fluctuation accompanied by quite 
large differences in likelihood, for example, would be indicative 
of successful mixing. This character alone is a weak indicator of 
convergence because chains commonly fluctuate before they find 
better regions of tree space. New sampling procedures, such as 
Metropolis Coupled MCMC (MC3), are being introduced that 
can address more difficult sampling and mixing problems and are 
likely to feature more frequently in phylogenetic inference. See
also Note 3.

The subjectivity and applicability of priors is one of the thorniest 
subjects in the use of Bayesian inference. Their pros and cons are 
widely discussed elsewhere (e.g., pros (44); cons (9)) and I shall 
concentrate on practical details of their use in tree inference. If 
there is sufficient information in a dataset and the priors adequately 
cover tree space and parameter space, then the choice of prior 
should have only minimal impact on an analysis. There are broadly 
two types of prior: informative priors and uninformative priors. 
Informative priors describe a definite belief in the evolutionary 
relationships in sequences prior to analyzing the data, potentially 
utilizing material from a broad spectrum of areas, from previous 
molecular and morphological studies to an individual research-
er’s views and opinions. This information is processed to form a 
probability distribution over tree space. Strong belief in a subset of 
branches in a phylogeny can be translated as a higher prior prob-
ability for the subsection of tree space that contains them. This 
utility of informative priors has been demonstrated (44), but is 
rarely used in the literature. This is partly because the choice of 
prior in Bayesian inference often rests with those who produce tree 
estimation software, not the researcher using it. Implementing an 
opinion as a prior can be an arduous process if you are not familiar 
with computer programming, which limits a potentially interesting 
and powerful tool.

Uninformative priors are commonly used in phylogenetics and 
are intended to describe the position of no previous knowledge 

5.4. The Specification 
of Priors
5.4. The Specification 
of Priors



Inferring Trees 305

about the evolutionary relationship between the sequences. 
In tree inference this can be interpreted as each tree being 
equally likely, which is philosophically similar to how other 
methods, such as likelihood and parsimony, treat tree estima-
tion. Producing uninformative priors has proved problematic 
because of the interaction of tree priors with those of other 
parameters. This problem has been demonstrated to mani-
fest itself as high confidence in incorrect tree topologies (47)
and overly high support for particular branches in a tree (48, 
49). Further research demonstrated that this is likely to be 
the result of how Bayesian analysis deals with trees, in which 
the length of some branches are very small or zero (47, 50).
There have been several suggestions to deal with these prob-
lems, including bootstrapping (49) and describing trees with 
zero branches in the prior (51). There is currently no settled 
opinion on the effectiveness of these methods. Users of Baye-
sian phylogenetics should keep abreast of developments in the 
area and employ due care and diligence, just as with any other 
tree estimation method.

 1. Methodology and statistical models: The first step in any 
study requiring the estimation of a phylogenetic tree is to 
decide which methodology to use. Statistical methods are 
arguably the most robust for inferring trees. Their compu-
tational limitations are outweighed by benefits, including 
favorable statistical properties and explicit modeling of the 
evolutionary process. Choice of evolutionary model is also 
important and other chapters offer more details about the 
considerations one should make prior to phylogenetic infer-
ence. In general, models that more realistically describe evo-
lution are thought more likely to produce accurate estimates 
of the tree. Models should include at least two components: a 
factor defining variation in the overall rate between sites, and 
an adequate description of the replacement rates between 
nucleotides/amino acids. Phylogenetic descriptions of rate 
variation allow each site in an alignment to evolve at a dif-
ferent overall rate with a defined probability. The distribu-
tion of potential rates is often described as a Γ-distribution,
defined through a single parameter α that is inversely pro-
portional to amount of rate variation (52).

   For DNA models, replacement rates between bases should 
minimally consist of the parameters of the widely imple-
mented HKY model (53), which describe the relative fre-
quency of the different bases and the bias toward transition

12. Notes12. Notes
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mutation. The replacement rates between amino acids in 
protein models are usually not directly estimated from the 
data of interest. Instead, substantial amounts of representa-
tive data are used to produce generally applicable models, 
including the empirical models of Dayhoff (54) and Whe-
lan and Goldman (WAG) (55) for globular proteins, and 
mtREV (56) and mtmam (57) for mitochondrial proteins. 
It is also common practice to adjust the relative frequency 
of the amino acids in these models to better reflect the data 
under consideration (58, 59). Models describing the evolu-
tion of codons can also be used for phylogeny estimation 
(60), although their primary use in phylogenetics remains 
the study of selection in proteins (see Chapter 15).

 2. Choosing phylogenetic software: After deciding upon an 
appropriate methodology, a set of phylogenetic software must 
be chosen to estimate the tree. Phylogenetic studies require 
the best possible estimate of the tree, albeit tempered by com-
putational limitations, and choosing software to maximize the 
coverage of tree space is advantageous. This should ideally 
involve creating a list of potentially best trees from a range 
of powerful phylogenetic software packages using comple-
mentary methods of tree searching. When using software 
that does not resample from tree space, it is useful to manu-
ally start the estimation procedure from different points in 
tree space, mimicking resampling and expanding coverage. 
In practice, not all phylogenetic software may implement the 
chosen model. In these cases, the model most closely resem-
bling the chosen model should be used.

  The final list of potentially best trees is informative about the 
difficulty of the phylogenetic inference problem on a particular 
dataset. If the trees estimated by different software and start-
ing points frequently agree it is evidence that the tree estimate 
is good. If few of the estimates agree, inferring a tree from 
those data is probably hard and continued effort may reveal 
even better trees. Direct comparisons between the scores of 
different phylogenetic software packages are difficult because 
the models used and the method for calculating scores can 
vary. The final list should be assessed using a single consistent 
software package that implements the chosen model. The tree 
with the highest score is taken to be the optimal estimate and 
confidence intervals can then be calculated.

 3. Bayesian inference versus ML: Bayesian and ML approaches 
to statistical tree inference are highly complementary, shar-
ing the same likelihood function and their use of evolu-
tionary models. The MAP tree in Bayesian inference and 
the optimal tree under ML are likely to be comparable 
and this can be exploited by running them in parallel and 
comparing their optimal tree estimates. This is also a useful 
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diagnostic to assess whether the MCMC chain has con-
verged: If the trees under Bayesian inference and ML agree, 
it is good evidence that the chain has successfully burned in 
and all is well. When the trees do not agree, one or both of 
the estimation procedures may have gone awry. When the 
ML estimate is better (in terms of likelihood or posterior 
probability) and does not feature in the MCMC chain, it 
may demonstrate that the MCMC chain did not converge. 
When this occurs, making any form of inference from the 
chain is unwise.

  When the Bayesian estimate is better, it is indicative 
that the MCMC tree search was more successful than the 
ML point estimation. This demonstrates a potential use of 
MCMC as a tool for ML tree estimation. If an MCMC 
sampler is functioning well, its tree search can potentially 
outperform the point estimation algorithms used under 
ML. The tree with the highest likelihood from the chain 
is therefore a strong candidate as a starting point for point 
estimation, or even as an optimal tree itself. This approach 
is not currently widely used for phylogenetics inference.

S.W. is funded by EMBL. Comments and suggestions from Nick 
Goldman, Lars Jermiin, Ari Loytynoja, and Fabio Pardi all helped 
improve previous versions of the manuscript.
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Chapter 15

Detecting the Presence and Location of Selection 
in Proteins

Tim Massingham

Abstract

Methods to detect the action of selection on proteins can now make strong predictions about its strength 
and location, but are becoming increasingly technical. The complexity of the methods makes it difficult 
to determine and interpret the significance of any selection detected. With more information being 
extracted from the data, the quality of the protein alignment and phylogeny used becomes increasingly 
important in assessing whether or not a prediction is merely a statistical artifact. Both data quality issues 
and statistical assessment of the results are considered.

Key words: Positive selection, maximum likelihood, molecular evolution, protein evolution, neutral 
theory, adaptation, phylogeny.

The appeal of detecting the role that selection has played in a 
protein’s evolution lies in the connection to function: sites show-
ing an unusual reluctance to change residue may be important 
for retained function, whereas those that change more than is 
expected by chance might be responsible for divergence in the 
protein’s function and so adaptation. The patterns of conserved 
and diversified sites along a protein are informative about pro-
tein–protein and protein–ligand interactions, and expose the 
molecular fossils of past evolutionary arms races.

Traditionally, selection has been modeled in a population genet-
ics context in terms of the difference in fitness between individual 
alleles, which affect how rapidly alleles propagate though a population. 
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The methods considered in this chapter detect selection by looking 
at the average behavior of many mutations over relatively long 
periods of time—whether there has been a prevalence of amino 
acid changing nucleotide mutations (non-synonymous) compared 
to silent (synonymous) mutations in a protein’s coding sequence. 
Methods of this type are best suited to detecting cases in which 
selection has acted to cause unusually frequent changes in the amino 
acid composition of the protein, such as might be observed if some 
regions have been involved in an evolutionary arms race or when 
ligand-specificity has changed in a highly duplicated gene family.

Where change in function has been caused by a few particu-
larly fit mutations and followed by a long period of conserva-
tion, the frequency of amino acid change is relatively low and the 
methods have little power to detect that those mutations that did 
occur were subjected to diversifying selection.

Under strictly neutral evolution, there is no difference between 
the fitness of a non-synonymous or synonymous mutation or in 
how rapidly they propagate through a population. The probabil-
ity that a neutral mutation ultimately becomes fixed in all mem-
bers of the population is independent of whether that mutation 
was non-synonymous or synonymous, and so the ratio of non-
synonymous to synonymous mutations that ultimately become 
fixed is equal to the ratio of non-synonymous to synonymous 
polymorphisms within the population.

The McDonald-Kreitman test (1) considers the relative 
proportions of non-synonymous and synonymous mutants that 
occur within and between populations. Sites that exhibit varia-
tion in any population are classed as polymorphic, whereas sites 
that have no variation within a population but are different in 
at least one population represent fixed mutations; monomorphic 
sites are ignored since they are not informative about the types 
of mutation that occur (but may be informative about the rate 
at which mutations arise). Mutations in these two categories are 
then tabulated according to whether they are synonymous or 
non-synonymous, ambiguous sites being discarded, to form a 
2-by-2 contingency table that can be used to test whether the 
type of mutation (synonymous or non-synonymous) is independ-
ent of where it is observed (within or between populations).

Table 15.1 shows the results reported by McDonald and 
Kreitman (1) for the adh locus, encoding alcohol dehydrogenase, 
in three species from the Drosophila subgroup. A one-sided appli-
cation of Fisher’s exact test (2) gives a p value of 0.007 for the 
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presence of diversifying selection, but there is no indication as to 
where it took place.

The “polarized” variant of the McDonald-Kreitman test ena-
bles selection to be more precisely located in the phylogeny so that 
one can conclude, for example, that diversifying selection acted on 
the protein on the lineage leading to D. melanogaster rather than 
just somewhere between D. melanogaster and D. simulans. The 
polarized test uses a consensus ancestral sequence to assign fixed 
mutations to a particular lineage; non-polymorphic sites in which 
the ancestral sequence is ambiguous are ignored. The contingency 
table for non-neutral evolution on a single lineage is constructed 
by comparing fixed mutations on that particular lineage to muta-
tions that are polymorphic in any lineage; the difference between 

Table 15.1
Contingency table showing the different types of 
mutations observed within and between three populations 
in the Drosophila subgroup

Between Within

Non-synonymous  7  2

Synonymous 17 42

As originally reported by McDonald and Kreitman (1991). No sites were discarded 
because of ambiguity, although two sites showed more than one synonymous poly-
morphism.

N
S

N
S

N
S

N
S

  7   2
17  42

B   W

  5   2
15  42

B   W

1    2
0   42

B   W

 2  42
 1   2
B   W

N = 1
S  = 0

N = 5
S = 15

D. melanogaster D. YakubaD. Simulans

N = 1
S  = 2

Polymorphic sites

N = 2    S = 42

Ancestral reconstruction
(consensus)

D. melanogaster

D. Simulans

Pooled

D. Yakuba

Fig. 15.1. Mutations observed in Drosophila adh tabulated for a McDonald-Kreitman test. 
The number of synonymous, S, and non-synonymous, N, mutations polymorphic within, W,
and fixed between, B, populations in the Drosophila subgroup. Mutations are broken down by 
branch, using the consensus ancestral reconstruction, and contingency tables are presented 
both for the original MK test (data for all branches pooled) and for each branch using the 
polarized variant. Data taken from McDonald and Kreitman (1991).
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this and the original test is illustrated in Fig. 15.1. One-sided 
application of Fisher’s exact test gives p values of 0.026 for 
diversifying selection leading to D. yakuba, 0.183 for the line-
age leading to D. melanogaster, and 0.364 for that leading to 
D. simulans. If multiple lineages are considered in this manner, 
p values must be adjusted to allow for the number of tests per-
formed (see “Correcting for Multiple Tests”); the adjusted p value 
for the diversifying selection indicated on the D. yakuba branch is 
0.08 and so would not be considered significant.

The relative number of synonymous and non-synonymous 
mutations that might be the result of a single nucleotide muta-
tion depends on the protein’s amino acid composition and codon 
bias, so the MK test should only be applied to species in which 
these are similar. A contingency table of species against codons 
can be used to test whether there is a significant difference in 
codon usage between the two sequences considered.

Because it does not take into account uncertainty in the ances-
tral reconstruction, the McDonald-Kreitman test is limited in the 
number of sequences and the degree of divergence for which it is 
valid. For example, there are sites in the adh locus data that show 
fixed differences between D. melanogaster and D. simulans, but 
are polymorphic in D. yakuba; potential problems with ambigu-
ity of the ancestral reconstruction are avoided by counting these 
sites as polymorphic but information has been lost since there are 
fixed differences that have not been counted. If all ancestors can 
be reconstructed perfectly, then fixed mutations on all branches 
of a phylogeny are known and can be pooled, if not then most 
data have to be discarded as ambiguous.

A more severe limitation of the MK test is that mutations at all 
sites are pooled in the same contingency table, so the procedure 
measures the average selective pressure across the entire sequence 
and a few sites under strong diversifying selection may be masked 
by a lot of conserved sites. The likelihood-based methods for 
detecting selection rectify most of the drawbacks of the MK test at 
the expense of employing more technical statistical machinery.

The likelihood-based approaches for detecting diversifying selec-
tion rely on a probabilistic model of nucleotide substitution that is 
composed of two steps: background mutation followed by selec-
tion. New mutations arise in the population and become fixed 
with some probability dependent on the increase or decrease in 
fitness they bring the organism. The process is described by a 
matrix, containing the relative rate that one codon is substituted 
by another, mutations to and from stop codons being ignored. 
Although more complex versions can be produced, the following 
simple substitution matrix (3) describes many important features 
of molecular evolution: differing fixation probabilities for non-
synonymous and synonymous changes (pN and pS, respectively), 
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transition/transversion bias (k) in nucleotide mutation, and 
compositional differences through the frequency (pi) that codon 
i is observed. The i,j entry of this matrix is determined by:

q

i j
i j

ij

j

∞

→
→

0 more than one nucleotide substitution
synonymousp pS ttransversion
synonymous transition
nonsynonym

p k
p

j

j

i j
i j

p
p

S

N

→
→ oous transversion

nonsynonymous transitionp kj i jpN →

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

with the diagonal entries (qii) set so that the substitution matrix 
is a valid rate matrix for a continuous-time Markov chain. Since 
time and rate are confounded, the process is scaled so one substi-
tution is expected per unit time.

The probabilities of fixation for synonymous and non-
synonymous mutations are often written as their ratio w N= p

pS

,

the relative rate ratio of non-synonymous to synonymous sub-
stitution. The quantity w is also known as dN/dS or KA/KS in 
the literature. Interpreting the non-synonymous/synonymous 
ratio as the ratio of two probabilities of fixation connects it 
with the population genetic notion of fitness, with implica-
tions for how any observation of diversifying selection should 
be interpreted: under the Wright-Fisher model, the probabil-
ity that a newly arisen mutation ultimately becomes fixed in 
the population depends on both the relative fitness of the new 
allele and the effective size of the population.

If there are no differences between the probability that 
non-synonymous and synonymous mutations are fixed, then 
w = 1, independently of the population size and hence inde-
pendently of the effects of fluctuations in the size of the popula-
tion. Although the point where purifying selection switches to 
being diversifying selection does not depend on the population 
size, the relationship between relative fitness and dN/dS for 
non-neutral mutations does. Shifts in the size of the population 
mean that mutations resulting in the same increase or decrease 
in fitness may have different probabilities of fixation, depending 
on where they occurred in the phylogenetic tree—for this rea-
son caution should be exercised when comparing dN/dS at two 
different sites and declaring that one is under stronger selection 
than the other. The mutations that lead to two sites having the 
same ω may not have caused the same average change in the fit-
ness of the organism.

These models of substitution make several assumptions that 
may be violated in real data; for example, they assume that all 
mutations have become fixed in the population, whereas in reality 
individual sequences may contain mutations that will ultimately be 
lost from the population (see Note 1). Multi-nucleotide mutations,
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such as those that can be caused by UV damage or by a second 
mutation occurring in the same codon before the first is fixed, 
are assumed not to occur, although there is considerable evidence 
that they do in practice. (See (4) for a review and suggestions of 
how these effects can be incorporated in substitution matrices.) 
Large-scale evolutionary events like frame-shifts, gene conver-
sions or any other form of horizontal transfer are not described 
by these models and their presence in data can lead to errone-
ous indications of diversifying selection. The substitution model 
allows for differing codon composition through the codon fre-
quency but the mechanisms that create and sustain a codon bias 
are not well understood and such a simple correction may not 
reflect reality (Note 2).

Although insertion events are not explicitly modeled, they are 
often incorporated into calculations as “missing data”: codons are 
used when they are present, and all possibilities are considered oth-
erwise. This procedure ignores any information that the presence 
of an insertion event conveys about the selection pressures on the 
bordering sequence, but does take into account how the inserted 
sequence evolves afterward and so may reveal the evolutionary con-
straints that lead to the event. Deletions are dealt with similarly.

Given an alignment of protein-coding sequences and a phy-
logeny connecting them, the probability of observing column i
of the alignment under this model of evolution can be calculated 
using the standard algorithms (5). Let the codons in column z, 
Di, be under selective pressure w, and all other parameters such 
as κ and branch length be represented by q. The log-likelihood 
quantifies how well a particular set of parameters describes the 
data, and is related to the probability by:

li (w,q |Di) = ln P (Di |w, q).

Assuming all sites are independent, the log-likelihood is additive 
and so the log-likelihood of the parameters given all columns in 
the alignment is:

l (w,q |D) = Σ
i
li (w, q |Di).

Parameter values that maximize the log-likelihood are good esti-
mates and can be found using standard numerical optimization 
techniques, although there are some practical difficulties in ensur-
ing that the values found are indeed maximal (see Note 3).

The maximum log-likelihood can also be used for hypothesis 
testing, for example, to test whether the data support a more 
general probabilistic model over a simpler one. When one model 
is a special case of the other, the models are said to be nested. 
The likelihood-ratio test statistic is twice the difference in the 
maximum log-likelihood between the more general and simpler 
models; the LRT statistic is small when there is no evidence that 
the general model is a better description of the data, with larger 
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values indicating stronger evidence in favor of the more general 
model. The exact distribution of the LRT statistic, which is used 
for the calculation of p values, may depend on the models used, 
although it tends to a c2 distribution, or mixture of c2 distribu-
tions, under very general conditions (6).

A “strictly neutral” model of evolution (as defined in the pre-
ceding with ω = 1) is nested within one in which ω is free to vary, 
so the hypothesis test of neutral verses non-neutral evolution can 
be framed in terms of nested models. The likelihood ratio test 
statistic, ∆, for this example is defined by:

1
2 ∆ = max , |D | D

w, q q
w q ql l 1,( ) − ( )max

and is distributed as c1
2, critical values for which are available 

in most statistical tables. The likelihood for each model is maxi-
mized separately, so the ML estimate of θ when w = 1 may be 
different than when w is free to vary.

For neutrally evolving sequences, the maximum likelihood 
value of w is equally likely to be above or below one. If only 
diversifying selection is an interesting alternative and so the more 
general model has the restriction w ≥ 1 then the likelihood-ratio 
statistic is zero half the time—rather than conforming to a c1

2

distribution, the likelihood ratio statistic is distributed as an 
equal mix of a point mass on zero and a c1

2 distribution, written 
1
2

1
2IO ∧ 1

2c . The critical values of this mixture distribution are equal 
to those from a c1

2 distribution that has half the size.
Like the McDonald-Kreitman test, this procedure assumes 

that all sites are under the same level of non-synonymous selec-
tion and, although useful for determining whether or not the 
sequences evolved like pseudo-genes, does not realistically 
describe how selection might operate on a functional protein: 
some regions may be so important that any change would be 
deleterious, whereas others may be involved in an evolutionary 
arms race and change constantly.

The random-site methods of detecting selection (3, 7) add an 
extra layer to the model of sequence evolution to describe varia-
tion in w along the sequence. Suppose it was known that each site 
along a protein had been subjected to one of n different levels of 
selective pressures, with proportion pj sites evolving with selec-
tion pressure wj, then without knowing anything further about 
each aligned site, the probability of the observed data is:

P D p P Di j
j

n

i( ) ( )=
=

∑
1

| jω

and the likelihood for each site, and hence for the entire sequence, 
can be calculated as previously. By altering the number of categories
and constraining the values of wj, nested tests for diversifying 
selection can be constructed.
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Models with only a few categories of sites cannot describe the 
full range of selection that operates on different sites of a protein 
but each additional category adds two more parameters. Instead 
of allowing complete freedom of choice, the categories are often 
constrained to those of a particular form (“family”), where a few 
parameters determine the strength of selection for all categories. 
Many such families have been produced (7) by breaking a contin-
uous distribution into equal chunks and representing each chunk 
by a category with w equal to the median value of the chunk. The 
categories produced can either be thought of as a distribution in 
their own right or as an approximation to a continuous distribu-
tion which improves as the number of categories increases. The 
more popular models are described in Note 4.

The use of w to detect selection implicitly assumes that the 
probability that a synonymous mutation becomes fixed in the 
population is constant across sites, and so can be used as a surro-
gate for the probability of neutral fixation. See Note 5 for alter-
natives if synonymous variation is suspected.

As is often the case in phylogenetics, hypothesis tests for the 
presence of diversifying selection are more complex than is cov-
ered by the standard theory for likelihood ratio tests. Rather than 
taking fixed values under the null model, parameters that differ-
entiate the null and alternative models may become inestimable 
as categories merge or their weight is reduced to zero. There is 
also the additional complication that not all cases in which the 
alternative model has a greater likelihood than the null have cat-
egories of sites with wj > 1, and so do not represent the possibil-
ity of diversifying selection. These problems can be overcome by 
using parametric bootstrap techniques, comparing the test statis-
tic for the set of data being studied to those from many random 
“pseudo-sets” of data, generated under the null model. Using 
the appropriate set of maximum likelihood parameters, a large 
number of pseudo-sets of data are generated using the null model 
(8) and the maximum likelihood values found under both the 
null and alternative models for each pseudo-set. Considering the 
jth pseudo-set, if the ML parameters under the alternative model 
indicate diversifying selection, then define Bj to be equal to the 
likelihood-ratio test statistic, otherwise it is set to zero. If the ML 
parameters under the alternative model for the original set of data 
do not indicate the presence of diversifying selection, then we 
conclude none is present. Otherwise the p value for the presence 
of diversifying selection can be estimated by the proportion of 
pseudo-sets for which Bj > ∆.

A protein that has undergone a recent insertion event con-
tains residues that are not homologous to any other in the align-
ment and so provide no information about the phylogeny or 
selection pressures that have acted along it. However, artificially
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simulated data sets are often produced ungapped and so are not 
fair representations of the original data, each site being more 
informative on average. This can be remedied by transferring 
the pattern of gaps from the original alignment onto each of 
the artificial sets of data, although this incorrectly assumes that 
there is no relationship between the gap occurrence and the 
strength of selection.

The non-parametric bootstrap provides an alternative 
approach to testing for the presence of diversifying selection. 
Rather than generating alignment columns using a model, columns
from the original data are sampled with replacement to create a 
new alignment of equal length. This new alignment reflects the 
biases of the original, containing about the same number of sites 
under diversifying selection and the same number of gaps, but 
ML parameter estimates will differ from the original, depend-
ing on how confidently they were estimated. The proportion of 
resampled sets for which the ML parameter estimates indicate the 
presence of diversifying selection (that is, having one or more cat-
egories with non-zero weight and w > 1) indicates the confidence 
that the original data contained sites under diversifying selection. 
When the diversifying selection detected in any of the resampled 
sets is borderline, having a small weight or close to the conserv-
ing/diversifying boundary, extra care should be taken to ensure 
that the result is not due to numerical error in finding the ML 
estimates.

The use of the nonparametric bootstrap was first introduced 
into phylogenetics to assess the confidence when comparing many 
potential topologies (9). The parametric bootstrap has been used 
to test whether a given substitution model adequately describes a 
sequence alignment (8). Efron and Tibshirani (10) provide a very 
readable introduction to bootstrap techniques. In practice, the 
amount of computing power needed makes bootstrap techniques 
infeasible for many studies and approximations are used instead 
(see Note 6).

From a Bayesian perspective, the weight on category j can also be 
thought of as the prior probability that a randomly chosen site is 
in that category. The posterior probability that site i is in category 
j can be calculated as:

p P D

p P D

j i j

j i jk

⏐

⏐

w

w

( )
( )∑

and the sum of the posterior probabilities from all categories where 
wj  > 1 gives the posterior probability that a site is under diversify-
ing selection. This procedure is known as naïve empirical Bayes 
estimation and it does not allow for uncertainties in the estimates 

2.3. Location of 
Diversifying Selection
2.3. Location of 
Diversifying Selection
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of any parameters, which are particularly important when some of 
the categories lie close to the conserving/diversifying boundary and 
a small change can flip them from one side to the other. A much 
improved procedure that corrects this defect, Bayes empirical 
Bayes (11) and these posterior probabilities should be reported 
in preference.

A more direct approach to detecting deviations from neu-
tral evolution at a particular site is to use a likelihood ratio test 
at each individual site, the Site-wise Likelihood Ratio (SLR) 
approach (12, 13). All parameters, including w, are estimated by 
maximum likelihood, assuming the strength of selection is the 
same at every site. Holding all parameters other than w fixed, a 
separate value of w is re-estimated at every site to produce a new 
likelihood ratio test statistic:

1
2 1∆ | |i l l= ( ) − ( )max .w D Di i

Unlike the random-sites models, the site-wise likelihood 
ratio statistic has a simple distribution when the null model is 
true and so it is not necessary to use the bootstrap techniques 
discussed earlier. The test statistic ∆i is distributed as c1

2 for 
neutral versus non-neutral selection, and 1

2 OI ∧ 1
2

c1
2 for neutral 

versus diversifying or neutral versus conserving selection. Since 
each site requires a separate hypothesis test, the probability that 
at least one gives a false-positive result is greater than for a sin-
gle test and so the results need to be corrected for multiple 
comparisons. Methods are discussed in “Correcting for Multi-
ple Tests.”

The random-sites and SLR methods are complementary, the 
former providing a hypothesis test for the presence or absence of 
diversifying selection, whereas the latter tests for location. Detect-
ing and locating diversifying selection demands much more from 
the data than just determining presence or absence, so it is possible 
for random-sites methods to detect diversifying selection, even 
though no single residue is found to be changing significantly 
faster than neutral.

The likelihood methods for detecting diversifying selection rely 
on the accuracy of the phylogenetic tree and sequence align-
ment used, and problems with either could lead to erroneous 
indications of selection. Confidence in individual regions of 
the phylogeny can be assessed using bootstrap techniques (9)

3. Preparation 
of Materials
3. Preparation 
of Materials
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(see Chapter 14) and badly supported clades should be removed 
from the data, perhaps to be analyzed separately if they are inter-
nally well supported.

Estimating confidence in different regions of an alignment 
is a more difficult problem than for phylogeny and general tech-
niques are not available. Although far from ideal, the following 
procedure provides useful information about confidence in the 
alignment without making strong assumptions about how the 
sequences evolved:
 1. Align the sequences.
 2. Train a profile Hidden Markov Model (profile HMM) on 

the alignment.
 3. Align all sequences with the profile HMM.
 4. For each sequence, calculate the (posterior) probability that 

each site is aligned.
A profile HMM is a model of what a typical protein in the 

alignment looks like, consisting of a sequence of states that each 
describe what residues may occur at each site along its length. 
Proteins can be aligned with this model and sites in two different 
proteins that align with the same state are homologous. Columns 
of the alignment that represent insertions relative to the profile 
HMM, called “mismatch” states, do not represent homologous 
residues and so should not be included in further analyses. The 
theory behind the use of profile HMMs in biology is described 
in (14) and the necessary calculations can be performed using 
the hmmbuild, hmmalign, and hmmpostal programs from the 
HMMER package (15), which can be obtained from http://
hmmer.janelia.org/.

The variation in the posterior probability of correct align-
ment along three different sequences of the HIV/SIV envelope 
glycoprotein (GP120) is shown in Fig. 15.2. There is a pro-
nounced dip between residues 101 and 151 corresponding to 
the hypervariable V1/V2 loop regions of the protein. Examina-
tion of this region of the alignment shows that it contains many 
gaps, which is consistent with an intuitive notion of a poorly 
aligned region.

Closer inspection of the alignment reveals that HIV1-EL 
contains an apparent frame-shift affecting residues 425–428. 
Since the mutation-selection model only describes evolution 
arising from single nucleotide substitutions, sequence changes 
caused by other modes of evolution (e.g., frame-shifts, horizon-
tal transfer, gene conversions, etc.) should be removed before 
applying tests for diversifying selection. Rather than removing an 
entire sequence or column of the alignment, the sites affected can 
be replaced by gaps and so treated in the calculations as unknown 
“missing” data.
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An often neglected aspect of detecting diversifying selection 
is the need to correct for multiple tests. Results are often 
reported as a p value for the presence of diversifying selection 
and a list of sites at which it was most likely to have occurred. 
Making a prediction of diversifying selection represents an 
additional statistical test for each site considered and several 
may be false-positives.

Commonly used multiple comparison techniques seek to 
control the overall error by bounding one of two quantities: the 
Family-Wise Error Rate (FWER) is the probability that there are 
one or more false-positive results, whereas the False Discovery 
Rate is the proportion of positive results that are expected to be 
false. The classic Bonferroni procedure (16) falls into the former 
category, whereas more recent techniques, e.g., Benjamini and 
Hochberg (17), control the latter.

One of the simplest methods of adjusting for multiple tests 
is the Bonferroni procedure: The significance level of each indi-
vidual test is reduced so that the FWER is controlled. After 
removing sites from insertions only present in one sequence, 
suppose there are n sites at which diversifying could potentially 
be detected. If these sites are classified as being under diver-
sifying selection only if they have a p value less than a

n , then 
the Bonferroni inequality guarantees that the FWER is ≤a. For 
example, to guarantee an FWER of at most 0.01 when considering

276 sites, only those with a p value <
0.01
276

= 3 6. × 10−5 should be 
considered significant.

Insertions that are only observed in one species do not count 
toward the total number of potential false-positives because it 
is not possible to detect diversifying selection at such sites as 
the likelihood ratio statistic is zero. The Bonferroni procedure 
assumes the worst possible case—that all the sites under consid-
eration may be false-positives—and consequently the test is con-
servative. Consider, for example, the extreme case in which all 
sites bar one are under diversifying selection. Other procedures 
try to adjust the value of n depending on how much selection 
they predict to be present.

Although not the most powerful method of adjusting p values 
to control the FWER, Holm’s procedure (18) is always at least as 
powerful as the Bonferroni procedure and is valid under the same 
general conditions. Holm’s method is based on the observation 
that if diversifying selection detected at a site is a true-positive, 
then it should not count toward the number of potential false-
positives. The Bonferroni procedure is applied iteratively, remov-
ing sites that are “definitely” under diversifying selection from 
those that may potentially be false-positives.

4. Correcting
for Multiple Tests
4. Correcting
for Multiple Tests
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 1. Mark all sites as “not significant.”
 2. Calculate Bonferroni correction (b) based on the number of 

sites currently marked as “not significant.”
 3. If all sites marked as “not significant” have p values larger 

than b, then STOP.
 4. Mark all sites with a p value ≤b as “significant.”
 5. If any sites are marked “not significant,” go to 2; otherwise 

STOP.
The first application of iteration 1–3 is equivalent to applying the 
Bonferroni procedure to all sites; Holm’s procedure only differs 
if there are sites that are significant after Bonferroni correction. 
Either these are all true-positives, in which case the Bonferroni 
correction was too severe, or at least one is a false-positive and 
would also have been a false-positive under the Bonferroni proce-
dure. Therefore, Holm’s procedure controls the FWER at least as 
well as the Bonferroni procedure and finds at least as many true-
positives for a given nominal FWER. The price for this improved 
power is that when one false-positive result is found, Holm’s pro-
cedure is more likely than Bonferroni to find another: The two 
methods both control the probability of observing at least one 
false-positive result, but the expected number of such results is 
higher for Holm’s procedure.

For the GP-120 alignment discussed earlier, 341 sites have a 
p value for non-neutral evolution <0.01, including 19 with appar-
ent diversifying selection. Table 15.2 contains the results after 
applying Holm’s procedure with an FWER of 0.01, finding five 
more sites than the Bonferroni method (equivalent to iteration 1). 
Unfortunately, 10 of the sites apparently under diversifying selec-
tion, including both the sites still significant after applying Holm’s 
procedure, fall in the region indicated in Fig. 15.2, in which the 
alignment is uncertain and so could be artifacts due to alignment 

Table 15.2 
Number of sites in which significant non-neutral evolution 
was detected using Holm’s procedure to control the FWER 
rate to less than 0.01 over 590 individual tests

Iteration Significant sites

1 168 (2)

2 173 (2)

3 173 (2)

The number of sites with significant diversifying selection is in parentheses.
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error. Further investigation would be needed here before it can 
safely be concluded that diversifying selection is present.

Many other procedures are available to adjust p values for mul-
tiple comparisons; the R statistical software (http://www.r-project.
org/) is a good starting point, in particular the help page for the 
routine p.adjust, which implements several methods to control 
both FWER and FDR. The Hochberg’s FWER method (19) was 
used by Massingham and Goldman (12) and that of Simes (20) has 
also been used (21). Although not the most powerful technique, 
Holm’s procedure has the advantage of making fewer assumptions 
about how the tests are correlated with each other.

In real proteins, the need to retain the ability to fold and 
remain soluble causes dependencies between sites, which could 
lead to negative association between the strength of selection. 
For example, some sites may have to be conserved in order to 
stabilize the disruption caused by frequent changes occurring at 
other sites.

For random effects models, it is common to claim all sites 
with a posterior probability of diversifying selection greater than 
some threshold are significant. This criterion treats the Bayesian 
posterior like any other statistic and so should be corrected for 
multiple tests, although converting the posterior into a p value is 
complex and dependent on the set of data under study (21). The 
incorporation of parameter uncertainty causes complex depend-
ence between the posterior probabilities of different sites, which 
makes correction difficult.

 1. In future, models of substitution may be constructed that 
allow for sequences to have been sampled from a popula-
tion and so may contain partially selected mutations that are 
not yet fixed in the population as a whole. This would be 
advantageous since the McDonald-Kreitman test shows that 
polymorphic sites contain information about neutral evolu-
tion that could improve estimates of selection. Currently, 
population sampling is not allowed for and the presence 
of a polymorphism will bias the estimates of non-synony-
mous and synonymous rates at a site in similar fashion to a 
sequencing error. Although not ideal, a practical measure to 
guard against the adverse effects of sampling from a popu-
lation is to see if diversifying selection at a site can still be 
detected after the removal of individual sequences. This pro-
cedure relies on unselected mutations being sufficiently rare 
that they only occur in at most one sequence at each site. 
Unfortunately, this situation is akin to the birthday paradox: 

5. Notes5. Notes
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The probability of an unselected mutation occurring at the 
same site in any two of the sequences sampled can be quite 
high, even though the probability of one occurring in any 
individual sequence is small. Removing sequences dilutes 
population sampling effects, but does not remove them.

 2. The evolutionary origins of codon bias and how it interacts 
with selection are not fully understood. Although the codon 
substitution matrix includes a correction for composition, 
it does not describe any mechanistic reason why such a bias 
could arise or how it perpetuates. Consequently, the matrix 
does not accurately reflect the full effects that strong codon 
bias has had on the evolution of a protein. Measures of 
codon bias include the “relative synonymous codon usage” 
(22) and the “effective number of codons” (23), and care 
should be taken when highly biased data is indicated.

 3. Finding the parameter values at which the log-likelihood is 
maximal is a difficult problem in phylogenetics and requires 
the use of numerical techniques. The likelihood ratio test 
requires the highest possible point of the likelihood func-
tion, the global maximum, whereas those found by numeri-
cal techniques may only be local maxima. This situation is 
analogous to finding the highest peak in a range of hills while 
blindfolded: You do not know which hill you are on, or how 
many hills there are, but you can walk uphill until you find 
the peak of whichever hill you are on. The only remedy is to 
start the optimizer at many different points and use the best 
result. The difference in log-likelihood between two nested 
models can never be less than zero, since one is just a special 
case of the other, and this is a useful check on whether a local 
maximum has been found. If D is ever found to be negative 
for nested models, then the numerical optimization has failed 
to find the global maximum in at least the alternative model. 
The advice from the PAML manual (24) is that the results 
from several different pairs of models should be compared, 
and many different starting points should be used for each 
optimization. In addition, the results from both fixed and 
random sites models should be compared before concluding 
that any selection found is not an artifact of bad optimiza-
tion.

 4. Random effects models require some distribution to be used 
to model how selection varies across sites in the sequence. 
Identifying the best choice for such a distribution is an 
open and perhaps insoluble problem. A number of different 
choices have been suggested (7), some of which are nested 
and so permit a likelihood-ratio test. Table 15.3 describes 
some common pairs used in the literature. However, many of 
the possible pairs of nested models do not properly represent 
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tests for the presence of diversifying selection and can report 
significant results when none are present. A good example is 
the pair M0 (all sites are under the same selective pressure) 
and M3 (selective pressure at a site takes one of n values), 
which is more properly a test of homogeneity than of diver-
sifying selection. The most common failing for other pairs of 
models is that there are special cases of the alternative model 
in which no site is under diversifying selection but cannot be 
described by the null model, for example, a beta distribution 
with a point mass representing strictly neutral evolution is 
a special case of M8 but cannot be described by M7 (just 
a beta distribution). This was remedied by introducing the 
model M8a and restricting the point mass in M8 so it can 
only represent strictly neutral or diversifying selection (25).
The comparisons M8a vs. M8 and M1a vs. M2a (21) should 
be used in preference to those previously published.

 5. If synonymous rate variation is suspected, there are variations 
of the probabilistic methods that take it into account (26).
These variants of the methods described here allow both 
the rate of non-synonymous and synonymous substitution 
to vary at each site, testing whether the two are different. 
These models can be interpreted in two ways: either the rate 
of neutral evolution is changing on a site-by-site basis, or 
there is selection for or against synonymous change. In the 
latter case, non-synonymous mutations might be fixed more 

Table 15.3
Some common distributions used in random-sites models 
of how selection varies across sites in a sequence

Name Formula Restrictions Number parameters

M0
M3

Iw
p0Iw 0 Ù…Ù pnIwn

1
2n − 1

M7
M8

b(a,b)
(1 − p)b(a,b) Ù pIw

2
4

M1a
M2a

pIw− Ù (1 − p)I1
pIw − Ù p1I1 Ù p2I1+

w− ≤ 1
w− ≤ 1, w+ ≥ 1

2
4

M8a
M8

(1 − p)b(a,b) Ù pI1
as previous

w ≥ 1 3
4

Iw is a point mass at w, b(a,b) is the density of a two-parameter beta func-
tion, and Ù means “mixed with” in the given proportions, so (1 − p)b(a,b)
Ù Ic is a mixture of a beta distribution and a point mass at c in the ratio 
1 − p:p. The models are grouped into nested pairs. All models must satisfy 
the restriction w ≥ 0.
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readily than synonymous ones but still slower than a truly 
neutral mutation: a different definition of positive selection 
to that used in this chapter. When synonymous rate variation 
is not present, these methods are less powerful than their 
equivalents because they must estimate more from the same 
data.

 6. One of the attractions of the likelihood ratio test that has 
led to its widespread use in phylogenetics is that the dis-
tribution of the test statistic usually tends toward a sim-
ple distribution, independent of the particular problem. 
Unfortunately, several of the assumptions required for this 
convergence do not hold for the mixture models used to 
test for diversifying selection, and other techniques must 
be used. The parametric and non-parametric bootstrap 
techniques described here can be computationally onerous, 
and often we would be willing to sacrifice some statisti-
cal power for expediency. In practice, the likelihood ratio 
statistic is compared to a simple known distribution that, 
although not exact, is thought to produce a conservative 
test for a given pair of models. Simulation studies (21, 27)
suggest that chi-squared distributions, with the degrees 
of freedom listed in Table 15.4, are a reasonable alterna-
tive to bootstrap methods and do not result in an excessive 
false-positive rate. For the comparison M0 vs. M3, the chi-
squared distribution listed is extremely conservative and so 
may fail to detect heterogeneity of selection in many cases 
in which it is present. In this particular case, the penalized 
likelihood-ratio test (28) provides an alternative method of 
comparison that has extremely good power.

Table 15.4 
Degrees of freedom for the chi-squared distributions 
that have been suggested for testing for diversifying 
selection by comparing the stated models

Comparison Degrees of freedom

M0 vs. M3 2n − 2

M1a vs. M2a 2

M7 vs. M8 2

M8a vs. M8 1

The comparisons M0 vs. M3 and M7 vs. M8 are included as they 
appear often in the literature but are not correct tests for diversifying 
selection and should not be used. n is the number of categories in 
the model.
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Chapter 16

Phylogenetic Model Evaluation

Lars Sommer Jermiin, Vivek Jayaswal, Faisal Ababneh, 
and John Robinson

Abstract

Most phylogenetic methods are model-based and depend on Markov models designed to approximate 
the evolutionary rates between nucleotides or amino acids. When Markov models are selected for analysis 
of alignments of these characters, it is assumed that they are close approximations of the evolutionary 
processes that gave rise to the data. A variety of methods have been developed for estimating the fit of 
Markov models, and some of these methods are now frequently used for the selection of Markov models. 
In a growing number of cases, however, it appears that the investigators have used the model-selection 
methods without acknowledging their inherent shortcomings. This chapter reviews the issue of model 
selection and model evaluation.

Key words: Evolutionary processes, Markov models, phylogenetic assumptions, model selection, 
model evaluation.

Molecular phylogenetics is a fascinating aspect of bioinformatics 
with an increasing impact on a variety of life science areas. Not only 
does it allow us to infer the historical relationships of species (1),
genomes (2), and genes (3), but it also provides a framework for 
classifying organisms (4) and genes (5), and for studying co-evolution 
of traits (6). Phylogenies are the final products of some studies and 
the starting points of others. Charleston and Robertson (7), for 
example, compared a phylogeny of pathogens with that of their 
hosts and found that the pathogens’ evolution had involved 
co-divergence and host-switching. Jermann et al. (8), on the other 
hand, used a phylogeny of artiodactyls to manufacture enzymes 
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thought to have been expressed by the genomes of their 8- to 
50-million-year-old common ancestors. In the majority of cases, 
including the examples cited in the preceding, the phylogeny is 
unknown, so it is useful to know how to infer a phylogeny.

Phylogenetic inference is often regarded as a challenge, and 
many scientists still shy away from approaching important ques-
tions from the evolutionary point of view because they consider 
the phylogenetic approach too hard. Admittedly, phylogenetic 
methods are underpinned by mathematics, statistics, and compu-
ter science, so a basic knowledge of these sciences goes a long 
way toward establishing a sound theoretical and practical basis for 
phylogenetic research. It need not be that difficult, though, because 
user-friendly phylogenetic programs are available for most computer 
systems. Instead, the challenges lie in: (i) choosing appropriate 
phylogenetic data for the question in mind, (ii) choosing 
a phylogenetic method to analyze the data, and (iii) determining 
the extent to which the phylogenetic results are reliable.

Most molecular phylogenetic methods rely on substitution mod-
els that are designed to approximate the processes of change from 
one nucleotide (or amino acid) to another. The models are usually 
selected by the investigator, in an increasing number of cases with 
the assistance of methods for selecting such models. The methods 
for selecting a substitution model are available for both nucleotide 
sequences (9) and amino acid sequences (10), and they are now 
commonly used in phylogenetic research. However, the substitution 
models considered by many of the model-selecting methods implic-
itly assume that the sequences evolved under stationary, reversible, 
and homogeneous conditions (defined in the following). Based on 
the evidence from a growing body of research (11–26), it appears that 
many sequences of nucleotides or amino acids have evolved under 
more complex conditions, implying that it would be: (i) inappropri-
ate to use model-selecting methods that assume that the sequences 
evolved under stationary, reversible, and homogeneous conditions; 
and (ii) wise to use phylogenetic methods that incorporate more 
general Markov models of molecular evolution (27–44).

The choice of substitution model is obviously important for 
phylogenetic studies, but many investigators are still: (i) unaware 
that choosing an inappropriate substitution model may lead 
to errors in the phylogenetic estimates, (ii) unsure about how to 
select an appropriate substitution model, or (iii) unaware that the 
substitution model selected for a phylogenetic study is in fact not 
the most appropriate model for the analysis of their data. A reason 
for the uncertainty associated with the choice of appropriate sub-
stitution models may be that an easy-to-understand explanation of 
the problem and its potential solutions is not yet available in the 
literature. The following attempts to provide such an explanation.

Underlying the approach taken in this chapter is the idea that 
the evolutionary pattern and evolutionary process are two sides of 
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the same coin: The former is the phylogeny, a rooted binary 
tree that describes the time and order of different divergence 
events, and the latter is the mechanism by which mutations in 
germ-line DNA accumulate over time along the diverging lineages. 
It makes no sense to consider the pattern and process separately, 
even though only one of the two might be of interest, because 
the estimate of evolutionary pattern depends on the evolutionary 
process, and vice versa. Underpinning this chapter is also a hope 
of raising the awareness of the meaning of the rate of molecular 
evolution: It is not a single variable, as commonly portrayed, but 
a matrix of variables. Finally, although many types of mutations 
can occur in DNA, the focus is on point mutations. The reasons 
for limiting the approach to those mutations is that phylogenetic 
studies mostly rely on the products of point mutations as the 
main source of phylogenetic information, and the substitution 
models used in model-based phylogenetic methods focus mostly 
on those types of changes.

The following sections first describe the phylogenetic assump-
tions and outline some relevant aspects of the Markov models 
commonly used in phylogenetic studies. The terminology used to 
characterize phylogenetic data is revised and several of the meth-
ods that can be used to select substitution models are described. 
Finally, the general need to use data surveying methods before 
and after phylogenetic analyses is discussed. Although using such 
methods before phylogenetic analyses is becoming more common, 
it remains rare to see phylogenetic results being properly evaluated; 
for example, using the parametric bootstrap.

The evolutionary processes that lead to the accumulation of sub-
stitutions in nucleotide sequences are most conveniently described 
in statistical terms. From a biologist’s point of view, the descrip-
tions may appear both complex and removed from what is known 
about the biochemistry of DNA. However, research using the 
parametric bootstrap (see Chapter 14) has shown that the vari-
ation found among real sequences can be modeled remarkably 
well using statistical descriptions of the evolutionary processes 
(44–47), so there is reason to be confident about the use of a 
statistical approach to describe the evolutionary processes.

From a statistical point of view, it is convenient to describe 
the evolutionary process operating along each edge of a phylog-
eny in terms of a Markov process, that is, a process in which the 
conditional probability of change at a given site in a sequence 
depends only on the current state and is independent of its earlier 
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states. The Markov model, commonly described as a substitution
model, is an approximation of the evolutionary process. It is also 
an integral part of all model-based phylogenetic methods, so 
it is convenient to know about phylogenetic assumptions and 
Markov models if selecting appropriate substitution models for a 
phylogenetic study is on the agenda.

The following three subsections describe the phylogenetic 
assumptions and Markov process in the context of alignments of 
nucleotides. The description also applies to alignments of amino 
acids, except that it then would be necessary to accommodate 20 
amino acids. The description of the phylogenetic assumptions and 
the Markov process is based primarily on two papers by Tavaré 
(48) and Ababneh et al. (49). For a good alternative description, 
see Bryant et al. (50).

In the context of the evolutionary pattern, it is commonly assumed 
that the sequences evolved along a bifurcating tree, where each 
edge in the tree represents the period of time over which point 
mutations accumulate and each bifurcation represents a speciation 
event. Sequences that evolve in this manner are considered useful 
for studies of many aspects of evolution. (Edges in a phylogeny 
are sometimes called arcs, internodes, or branches. In the interest 
of clarity, we recommend that the commonly used term branch 
be avoided, as it is ambiguous. It is sometimes used in reference 
to a sub-tree (i.e., a set of edges) and other times to a single edge
(51). ) A violation of this assumption occurs when the evolution-
ary process also covers gene duplication, recombination between 
homologous chromosomes, and/or lateral gene transfer between differ-
ent genomes. In phylogenetic trees, gene duplications look like 
speciation events and they may be interpreted as such unless both 
descendant copies of each gene duplication are accounted for, 
which is neither always possible nor always the case. Recombination 
between homologous chromosomes is most visible in phylogenetic 
data of recent origin, and the phylogenetically confounding effect 
of recombination diminishes with the age of the recombination 
event (due to the subsequent accumulation of point mutations). 
Lateral gene transfer is more difficult to detect than gene duplica-
tion and recombination between homologous chromosomes but is 
thought to affect studies of phylogenetic data with a recent as well 
as ancient origin. A variety of methods to detect recombination 
(52–56) and lateral gene transfer (57–62) are available, but their 
review is beyond the scope of this chapter. This chapter assumes 
that the sequences evolved along a bifurcating tree, without gene 
duplication, recombination, and lateral gene transfer.

In the context of the evolutionary process, it is most com-
monly assumed that the sites evolved independently under the 
same Markov process, the advantage being that only one Markov 
model is required to approximate the evolutionary process 
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Assumptions
2.1. Phylogenetic 
Assumptions



 Phylogenetic Model Evaluation 335

along an edge. In general, the sites are said to be independent
and identically distributed. The simplest exception to this model
assumes that some sites are permanently invariant; that is, unable 
to change over the entire period of time under consideration, 
whereas the other sites evolve independently under a single 
Markov model (44, 63, 64). Other possible exceptions assume 
that: (i) the variable sites evolve independently under different 
Markov models (65–67); (ii) the variable sites evolve in a corre-
lated manner (68–79); or (iii) the sites may be temporarily invari-
ant; that is, alternate between being variable and invariant over 
the period of time under consideration (80).

In addition, it is commonly assumed that the process at 
each site is locally stationary, reversible, and homogeneous (where 
locally refers to an edge in the tree). In phylogenetic terms, 
the stationary condition implies that the marginal probability of 
the nucleotides is the same over the edge. Reversibility implies 
that the probability of sampling nucleotide i from the stationary 
distribution and going to nucleotide j is the same as that of sam-
pling nucleotide j from the stationary distribution and going 
to nucleotide i. Homogeneity implies that the conditional prob-
abilities of change are constant over the edge (43, 49, 50). The 
advantage of assuming stationary, reversible, and homogeneous 
conditions is that reversibility allows us to ignore the direction 
of evolution during the phylogenetic estimation (by definition, 
stationarity is a necessary condition for reversibility), and homo-
geneity permits us to use one Markov model to approximate the 
evolutionary process between consecutive speciation events.

A further simplification of the three conditions is that the 
process at the site is globally stationary, reversible, and homo-
geneous, where globally refers to all edges in the tree. However, 
the relationship among these three conditions remains complex 
(Table 16.1), with six possible scenarios. (Two additional sce-
narios are impossible because a reversible process, by definition, 
also is a stationary process.) Given that the phylogenetic methods 
in most cases assume that the sequences evolved under station-
ary, reversible, and homogeneous conditions (Scenario 1) and 
that features in the sequence alignments (e.g., compositional het-
erogeneity) suggest that the other scenarios more appropriately 
describe the conditions under which the sequences evolved, it 
is reasonable to question whether the sequences evolved under 
conditions that are more complex than those of Scenario 1. We 
will return to this issue in a following section.

When the processes are globally stationary, reversible, and 
homogeneous, we can use a single time-reversible Markov model 
to approximate the instantaneous rates of change for all edges in 
the un-rooted phylogeny. The Markov models available for these 
restrictive conditions range from the one-parameter model (81)
to the general time-reversible model (82). When these conditions are 



336 Jermiin et al.

not met by the data, various methods are available (27–44). When 
the assumptions of locally stationary, reversible, and homogene-
ous conditions are not met by the data, only a few methods are 
available (27, 28, 30–32, 36, 37, 42–44).

Given that the function of many proteins and RNA molecules 
is maintained by natural selection, there is reason to assume that 
the evolutionary process at different sites is more heterogene-
ous than described in the preceding. For example, it is quite likely 
that some sites could have evolved under time-reversible conditions,
whereas other sites could have evolved under more general 
conditions, thus creating a complex signal in the alignment, 
which we might not be able to fully appreciate using the phy-
logenetic methods currently available. Accordingly, it is highly 
recommended that phylogenetic results be evaluated using the 
parametric bootstrap.

Consider a site in a nucleotide sequence, and allow the site to 
contain one of four possible states (A, C, G, and T, indexed as 
1, 2, 3, and 4 for the sake of convenience). As the sequence 
evolves, the site may change from state i to state j, where i, j = 1, 
2, 3, 4. Consider a random process, X, that takes the value 1, 2, 
3, or 4 at any point in continuous time. The Markov process 
X(t), t ≥ 0, can be described by the transition function:

p t X t j X iij ( ) = ( ) = ( ) =⎡⎣ ⎤⎦Pr | ,0  [1]

2.2. Modeling 
the Process at a Single 
Site in a Sequence

2.2. Modeling 
the Process at a Single 
Site in a Sequence

Table 16.1
The spectrum of conditions relating to the phylogenetic 
assumptions

Scenario Stationarity Reversibility
Homo-
geneity

Comment on 
each scenario

1 + + + Possible

2 − + + Impossible (by 
definition)

3 + − + Possible

4 − − + Possible

5 + + − Possible

6 − + − Impossible (by 
definition)

7 + − − Possible

8 − − − Possible

Note: “+” implies the condition is met; “−” implies the condition is not met.
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where pij(t) is the probability that the nucleotide is j at time t,
given that it was i at time 0. Assuming a homogeneous Markov 
process, let rij be the instantaneous rate of change from nucle-
otide i to nucleotide j, and let R be the matrix of these rates of 
change. Then, representing pij(t) in matrix notation as P(t), we 
can write equation [1] as:
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where R is a time-independent rate matrix satisfying three 
conditions:
 1. rij > 0 for i ≠ j;
 2. rii = –Sj¹i rij , implying that R1 = 0, where 1T = (1, 1, 1, 1) 

and 0T = (0, 0, 0, 0)—this condition is needed to ensure that 
P(t) is a valid transition matrix for t ≥ 0;

 3. pT R = 0T, where pT = (p1, p2, p3, p4) is the stationary distri-
bution, 0 < pj < 1, and S4

j=1 pj = 1.
In addition, if f0j denotes the frequency of the jth nucleotide in 
the ancestral sequence, then the Markov process governing the 
evolution of a site along a single edge is:
 1. Stationary, if Pr(X(t)= j)= f0j = pj, for j = 1, 2, 3, 4, where p

is the stationary distribution, and
 2. Reversible, if the balance equation pirij = pjrji is met for 1 ≤ i,

j ≤ 4, where p is the stationary distribution.
In the context of modeling the accumulation of point muta-

tions at a single site of a nucleotide sequence, R is an essential 
component of the Markov models that are used to do so. Each 
element of R has a role in determining what state the site will 
be in at time t, so it is useful to understand the implications of 
changing the values of the elements in R. For this reason, it is 
unwise to consider the rate of evolution as a single variable when, 
in fact, it is a matrix of rates of evolution.

Consider a site in a pair of nucleotide sequences that evolve from 
a common ancestor by independent Markov processes. Let X and 
Y denote the Markov processes operating at the site, one along 
each edge, and let PX (t) and PY (t) be the transition functions 
that describe the Markov processes X(t) and Y(t). The joint prob-
ability that the sequences contain nucleotide i and j, respectively, 
is then given by:

fij(t) = Pr[X(t) = i, Y(t) = j |X(0) = Y(0)], [3]

2.3. Modeling 
the Process at a 
Single Site in Two 
Sequences
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Sequences
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where i, j = 1, 2, 3, 4. Given that X(t) and Y(t) are independent 
Markov processes, the joint probability at time t can be expressed 
in matrix notation as:

F(t)=PX (t)T F (0)PY (t), [4]

where F(0) = diag(f01, f02, f03, f04), f0k = P [X(0) = Y(0) = k] and 
k = 1, …, 4. Equation [4] can be extended to n sequences, as 
described in Ababneh et al. (49). The joint probability function 
has useful properties that will be relied upon in the next section.

Before describing the methods available to select substitution 
models, it is necessary to discuss the terminology used to describe 
some of the properties of sequence data.

The term bias has been used to describe: (i) a systematic dis-
tortion of a statistical result due to a factor not allowed for in 
its derivation; (ii) a non-uniform distribution of the frequencies 
of nucleotides, codons, or amino acids; and (iii) compositional 
heterogeneity among homologous sequences. In some contexts, 
there is little doubt about the meaning but in a growing number 
of cases, the authors have inadvertently provided grounds for 
confusion. Because of this, we recommend that the term bias be 
reserved for statistical purposes, and that the following four terms 
be used to describe the observed nucleotide content:

● The nucleotide content of a sequence is uniform if the nucle-
otide frequencies are identical; otherwise, it is non-uniform.

● The nucleotide content of two sequences is compositionally
homogeneous if they have the same nucleotide content; other-
wise, it is compositionally heterogeneous.
The advantages of adopting this terminology are that we can 

discuss model selection without the ambiguity that we otherwise 
might have had to deal with, and that we are not forced to state 
what the unbiased condition might be; it need not be a uniform 
nucleotide content, as implied in many instances (the five terms 
are applicable to codons and amino acids without loss of clarity).

In discussing the complexity of an alignment of nucleotides, it 
is often convenient to consider the variation in the alignment in 
terms of the sources that led to the complexity. One such source 
is the order and time of divergence events, which leaves a signal 
in the alignment; it is this historical signal (83) that is the target 
of most phylogenetic studies. The historical signal is detectable 
because the sequences have a tendency to accumulate point mutations 
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over time. Other sources of complexity include: the rate signal,
which may arise when the sites and/or lineages evolve at non-
uniform rates; the compositional signal, which may arise when the sites 
and/or lineages evolve under different stationary conditions; and 
the covarion signal, which may emerge when the sites evolve non-
independently (e.g., by alternating between being variable and 
invariable along different edges). The term phylogenetic signal is 
used sometimes, either synonymously with the historical signal or 
to represent the signals that the phylogenetic methods use during 
inference of a phylogeny. Due to this ambiguity and the fact that 
the most frequently used phylogenetic methods appear to misin-
terpret the non-historical signals (i.e., by treating non-historical 
signals as if they were the historical signals), we recommend that 
the term phylogenetic signal be used with caution.

Separating the different signals is difficult because their mani-
festations are similar, so inspection of the inferred phylogeny is 
unlikely to be the best solution to this problem. Recent simulation 
studies of nucleotide sequences generated under stationary, revers-
ible, and homogeneous conditions as well as under more general 
conditions have highlighted a complex relationship among the his-
torical signal, the rate signal, and the compositional signal (84). The 
results show that the historical signal decays over time, whereas the 
other signals may increase over time, depending on the evolution-
ary processes operating at any point in time. The results also show 
that the relative magnitude of the signals determines whether the 
phylogenetic methods are likely to infer the correct tree. Finally, 
the results show that it is possible to infer the correct tree irrespec-
tive of the fact that the historical signal has been lost. Hence, there 
is good reason to be cautious when studying ancient evolutionary 
events—what might appear to be a well-supported phylogeny may 
in fact be a tree representing the non-historical signals.

Alignments of nucleotides may vary compositionally across 
sequences and/or sites. In the first case, the sites would not have 
evolved under stationary, reversible, and homogeneous condi-
tions, and in the second case, the sites would have evolved under 
different stationary, reversible, and homogeneous conditions. In 
either case, it would be inappropriate to estimate the phylogeny 
by using a single time-reversible Markov model to approximate 
the evolutionary processes.

A solution to this problem is to determine the type of com-
positional heterogeneity that is found in the sequence data. If 
compositional heterogeneity is across sites but not across sequences, 
then the evolutionary process may be approximated by a combina-
tion of time-reversible Markov models applied to different sections 
of the alignment. If, on the other hand, compositional heterogeneity 
is across sequences, then it is not possible to approximate the 
evolutionary process by any time-reversible Markov model.

3.3. Testing the 
Stationary, Reversible, 
and Homogeneous 
Condition
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and Homogeneous 
Condition
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Methods to detect compositional heterogeneity in align-
ments of nucleotides fall into four categories, with those of the 
first category using graphs and tables to visualize the nucleotide 
content of individual sequences, and those of the other categories 
producing test statistics that can be compared to expected distri-
butions (for a review, see (85) ). However, the methods are either 
statistically invalid, of limited use for surveys of species-rich data 
sets, or not yet accommodated by the wider scientific community. 
Faced with these challenges, Ababneh et al. (86) and Ho et al. 
(87) developed statistical and visual methods to examine under 
what conditions nucleotide sequence data might have evolved. 
The methods provide an opportunity to gain a better under-
standing of the evolutionary processes that underpin variation in 
alignments of nucleotides. We will now describe these methods.

Suppose we have l matched sequences of m independent and 
identically distributed variables taking values in n categories. An 
example of such data would be an alignment of l = 8 sequences of 
m = 500 nucleotides, implying that n = 4. Data of this nature can 
be summarized in an l-dimensional divergence matrix, D, which 
has nl categories and is the observed equivalent of mF(t). The 
hypotheses of interest concern the symmetry, marginal symmetry, 
and internal symmetry of D. In the context of diverging nucle-
otide sequences, the matched-pairs tests can be used to examine 
the goodness of fit of Markov models thought to approximate 
the evolutionary processes. The relevance of using these tests 
prior to phylogenetic analysis of aligned nucleotide sequences has 
long been recognized (48, 66, 88–90), but the tests are yet to be 
accommodated by the wider scientific community.

The matched-pairs tests can be divided into two groups 
depending on the number of sequences considered. In the simple 
case, in which only two sequences are considered, the matched-
pairs tests can be used to test for symmetry (91), marginal sym-
metry (92), and internal symmetry (86) of a divergence matrix 
derived from the nucleotide sequences. In more complex cases, 
in which more than two sequences are under consideration, two 
tests of marginal symmetry (86, 89) are available. Ababneh et al. 
(86) reviewed the matched-pairs tests cited in the preceding and 
placed them in the context of other matched-pairs tests, so rather 
than describing them again, we will show how the tests can be 
used to determine whether a set of sequences have evolved under 
stationary, reversible, and homogeneous conditions.

Suppose we have a pair of homologous nucleotide sequences that 
diverged from their common ancestor by independent Markov 
processes, and that the character states within each sequence 
are independent and identically distributed. Then the question is: 
Which scenario in Table 16.1 represents the most plausible 
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spectrum of conditions under which the sequences arose? To 
answer this question, we need to examine the divergence matrix, 
D (each element in D, i.e., dij, is the number of sites in which the 
sequences have nucleotides i and j, respectively). At the begin-
ning of the sequences’ evolution, the divergence matrix will be 
a 4 × 4 diagonal matrix. Later on, at time t > 0, the divergence 
matrix might look like this:

D t( ) =

⎡1478 362 328 334
315 1526 356 319
338 327 1511 334
338 330 324 1480⎣⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. [5]

In order to conduct Bowker’s (91) matched-pairs test of sym-
metry, we simply need to enter the off-diagonal elements of D(t)
into the following equation:
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d d
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ij jii j

2

2

=
−( )
+<

∑ , [6]

where the test statistic, S 2
B, is asymptotically distributed as a c2-variate 

on n = n(n – 1)/2 degrees of freedom. In the present example, S2
B = 

5.007 and n = 6. Under the assumption of symmetry, the probability 
of a test statistic ≥ 5.007 is 0.5430; hence, we conclude that these 
data are consistent with the null hypothesis for symmetry.

In order to conduct Stuart’s (92) matched-pairs test of 
marginal symmetry, we need to calculate the vector of marginal 
differences, u, and the variance-covariance matrix, V, of those 
differences. Here u = (d1• – d•1,d2• – d•2,d3• – d•3)

T and V
equals a 3 × 3 matrix with the elements:

v
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where di• is the sum of the ith column of D, d•i is the sum of the 
ith row of D, and so forth. Given u and V, we can obtain:

S 2
S = uT V–1u, [8]

where the test statistic, S 2
S, is asymptotically distributed as a c2

-variate on v = n – 1 degrees of freedom. In the present example, 
u = (33, –29, –9)T and:

V =
− −

− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2015 677 666
677 2009 683
666 683 2007

, [9]

so S 2
S = 0.7598 and n = 3. Under the assumption of marginal 

symmetry, the probability of a test statistic ≥ 0.7598 is 0.8591; 
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hence, we conclude that these data are consistent with the null 
hypothesis for marginal symmetry.

In order to conduct Ababneh et al.’s (86) matched-pairs test 
of internal symmetry, we draw on the fact that the test statistic 
S 2

I = S 2
B – S 2

S is asymptotically distributed as a c2-variate on 
n = (n – 1)(n – 2)/2 degrees of freedom. In the present example,
S 2

I = 4.2469 and n = 3. Under the assumption of internal symmetry, 
the probability of a test statistic ≥ 4.2469 is 0.2360; hence, we 
conclude that these data are consistent with the null hypothesis 
for internal symmetry.

We now turn to the more complex matched-pairs test of marginal 
symmetry. Suppose we have four nucleotide sequences that have 
evolved independently along a binary tree with three bifurcations. 
The alignment may look like that in Fig. 16.1. Visual inspection of 
the alignment emphasizes how difficult it is to determine whether 
the sequences have evolved under stationary, reversible, and homo-
geneous conditions, and therefore why the statistical methods are 
needed to provide the answer. In the following, we illustrate how 
statistical tests may be used to provide a detailed answer.

First, we use the overall matched-pairs test of marginal 
symmetry by Ababneh et al. (86), which yields a test statistic, 
TS, that is asymptotically distributed as a c2-variate on n = (n – 1)
(l – 1) degrees of freedom. In the present example, TS = 56.93 
and n = 9. Under the assumption of marginal symmetry, the prob-
ability of a test statistic ≥56.93 is ~5.22 × 10−09, implying that it is 
unlikely that these data have evolved under stationary, reversible, 
and homogeneous conditions.

3.3.3. Matched-Pairs Tests 
with More Than 
Two Sequences

3.3.3. Matched-Pairs Tests 
with More Than 
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Seq1      TTTCTGTAGACTACAGCCGAACTGATACAATACAAGCACAAACAATTCACCGCGTCGCGCACAGT
Seq2      CGTCTGGGATCTTTTGCCGGGCTGGGTCGCTACACGAACGCAGAGTTCTACTCCGGTCGCACTTG
Seq3      CTACAGTTAAGTTCTGCAGAGCTGCTTGACTATACGATCAACGAATACAAGACGGGGCGCACAGG
Seq4      CTTCGGTATAGTTCTGCCGAGCTGGTTCGCTACATGATCAATGATTACGACCCTGGGCCCTCTGG

CGTCAAAGCGGCATTCCATAAAAGTTCATCCATACCCCGAGGTAACCTCACGTCGTCACGGGCTGACGTAATCAC
CGGATGAGTTGGTTACGGAGAGTGCGGGTCTTTTCCCAAAGTTCATTTCCCGTCGTTTCGGCCTGTTGTAATCAT
CATATAAGTGGGATTCCGTAAGATCATGTCTCTACCCAAAGGGTACATGTTGTCTTCACGGCCAAACCTAATCAC
CGTATGAGTGGGATGGTGTCAAATTTCTTCTTGACCGGCAGGTCACCTCTTGTCCTGAGGGCCGGGCGGCAGCAG

GAAAGCACCGCCCGACCGGTCAAGCCTCAGAAGGGTCGAACACGGACTCAGTCTCAAGTGCTCCTCCACAAACGT
GTGTGCTCCGCCCCATCGGTGAAGCCCCGCTAGCGTATTACTCGGAATGTGTATCTAGTGCCAATTCATATACGT
GGGTCACCTGCCCAACAGTTGAAGGCGCGCCAGGCCGGCCCACGCATACAGACTCCAGAGCAACTCCATCAACGT
GTCTGTGCTGTTTTGCCTGTAATGCCTCGTCAGGCGGGAGCACGGTTTTAGTATCCTTGCCTACTCTATTATTCT

CATACTTAGTTCACCATCCCCGAGCCTATTTCCCTTAAAATGCGGTAACCCGGCCAGGGAGGAGAGAAAGAGTGG
ATAAGTTAGTTTATAATCTCCTCGCCTATTTCCTTAGAAATAGTATTATCGATCTTTGACGGAGTGAACTATGGG
CAAACTTACCTCAAAGTCTCCGCGGCTAGTCCCATTGAAATACGATTATCTCACCTTGCAAGAGTGAAAAAATCG
GAAATTTAGCTGATAATCTCTTCAGCTAATTCTTTAGAAATAGGCTTATCGTCCCGGGTTGGTGCGAAACATCCG

Fig. 16.1. An alignment of nucleotide sequences: the data were generated using Hetero 
(93) with default settings invoked, except that the stationary distributions for the termi-
nal edges were non-uniform (Π = (0.4, 0.3, 0.2, 0.1) for Seq1 and Seq3 and Π = (0.1, 
0.2, 0.3, 0.4) for Seq2 and Seq4).
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The overall matched-pairs test of marginal symmetry did not 
provide an indication of the sources of the data’s higher than 
expected complexity. To better understand what the sources might 
be, the matched-pairs tests of symmetry, marginal symmetry, and 
internal symmetry are needed. Table 16.2 demonstrates that the 
complexity is due to differences in the sequences’ marginal dis-
tribution (i.e., each sequence has acquired a different nucleotide 
content over time). The matched-pairs test of symmetry produced 
high probabilities for two of the comparisons (Seq1–Seq3 and 
Seq2–Seq4), whereas the other comparisons produced very low 
probabilities. These results are consistent with the notion that the 
approximation of the four sequences’ evolution requires at least two 
Markov models—one for Seq1 and Seq3 and another for Seq2 and 
Seq4. The two Markov models must be quite different to produce 
the low probabilities observed for four of the six comparisons.

The matched-pairs test of symmetry disclosed which pairs of 
sequences had evolved under different conditions but did not 
identify the sources of complexity in the data. To obtain such 
details, it is necessary to use the matched-pairs tests of mar-
ginal symmetry and internal symmetry. The matched-pairs test 
of marginal symmetry produced results that are similar to those 

Table 16.2
Results from tests of symmetry, marginal symmetry and 
internal symmetry for the four sequences in Fig. 16.1

Seq1 Seq2 Seq3

Test of symmetry

Seq2 0.0000

Seq3 0.8064 0.0002

Seq4 0.0000 0.6146 0.0000

Test of marginal symmetry

Seq2 0.0000

Seq3 0.6829 0.0000

Seq4 0.0000 0.9092 0.0000

Test of internal symmetry

Seq2 0.8500

Seq3 0.6772 0.4374

Seq4 0.3479 0.2706 0.4477

Note: Each number corresponds to the probability of obtaining the pair of sequences by 
chance under the assumptions of symmetry, marginal symmetry, and internal symmetry.
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obtained by using the matched-pairs test of symmetry, whereas the 
matched-pairs test of internal symmetry produced high probabilities 
for every pair of sequences (Table 16.2). The results are consistent 
with the notion that the sequences evolved under conditions that 
are not stationary, reversible, and homogeneous; that is, the condi-
tions under which the sequences were generated (Fig. 16.1). The 
sources of complexity in the alignment seem to be a combination 
of the historical signal and the compositional signal. Given that the 
data’s complexity is due not only to the historical signal, it would be 
wise to analyze the data phylogenetically using methods that accom-
modate the general Markov models of molecular evolution (27–44),
because the time-reversible Markov models would not suffice.

Based on Monte Carlo simulations, where the sequences 
evolved under conditions of the scenarios in Table 16.1, it is pos-
sible to summarize our knowledge of the three matched-pairs tests 
of symmetry, marginal symmetry, and internal symmetry. In gen-
eral, they are able to detect that sequences have evolved according 
to the conditions of two of the six possible scenarios. Specifically, 
when the sequences evolved according to the conditions of:
Scenario 1: The probabilities from the three tests will be uni-

formly distributed, with 5% of the tests producing a 
probability ≤0.05.

Scenario 3: The probabilities from the three tests will be uniformly 
distributed because the homogeneity of the process 
masks the non-reversible aspect of the process. A new 
surveying method outlined in Jayaswal et al. (43) may 
be useful but it has not yet been tested in this context.

Scenario 4: The probabilities from the three tests will be uniformly 
distributed because the homogeneity of the process 
masks the non-stationary and non-reversible aspects of 
the process. A new method by Jayaswal et al. (43) may 
be useful but it has not yet been tested in this context.

Scenario 5: The result will be like that for Scenario 1. To detect 
that the sequences evolved according to this scenario 
would require a third sequence and the use of a relative-
rates test (94).

Scenario 7: The probabilities from the matched-pairs test of 
marginal symmetry will be uniformly distributed, 
whereas the probabilities from the matched-pairs 
tests of symmetry and marginal symmetry may be 
non-uniformly distributed.

Scenario 8: The probabilities from the three tests may be non-
uniformly distributed, with >5% of the tests produc-
ing probabilities ≤ 0.05.

In summary, if the matched-pairs tests yield a non-uniform dis-
tribution of probabilities with a larger than expected proportion 
of probabilities ≤ 0.05, then the conclusion is that the sequences 
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must have evolved under the conditions of Scenarios 7 or 8. If the 
tests produce a uniform distribution of probabilities with 5% of the 
probabilities ≤0.05, then the conclusion is that the sequences may 
have evolved under the conditions of Scenarios 1, 3, 4 or 5, or 
alternatively, the non-historical signals may be too weak to detect.

The matched-pairs tests of symmetry, marginal symmetry, and 
internal symmetry have several features that make them extremely 
useful. Due to the design of the tests, the results are unaffected by 
invariant sites, and how far the sequences have diverged (because 
the emphasis is on those sites in which the sequences differ). If 
sites are thought to evolve at different rates, or there is reason to 
assume that certain sites have evolved under different conditions, 
then it is recommended that the sites be binned in a manner 
that reflects the evolutionary process at those sites (before the 
matched-pairs tests are conducted). If there is reason to think 
that the approximation to the evolutionary process will require 
the use of a covarion model (77), then the matched-pairs test 
may produce biased results because a site may be variable in some 
sequences and invariant in others; therefore, the interpretation of 
the test statistics should be done cautiously.

The procedure of binning those sites that may have evolved 
under the same conditions is sensible because it allows us to char-
acterize more precisely under which conditions the sites evolved. In 
binning the sites, there is a trade-off to consider between the number 
of bins and the sample size of the bins: Is a single large sample better 
than many small samples? Increasing the sample size will increase the 
power of the matched-pairs tests of symmetry, marginal symmetry, 
and internal symmetry, but the ability to determine under which 
conditions the sites evolved may be compromised. Hence, binning 
should be done with attention to, for example, the structure of the 
gene and the gene product. In so doing, there are some problems 
to consider: (i) it is not always clear what sites should be binned—
protein-coding DNA, for example, can be binned in several ways, 
depending on whether each site or codon is considered the unit of 
a sample, and depending on whether the gene product’s structure 
is considered; (ii) the small size of some bins may render it impos-
sible to conduct the matched-pairs tests of marginal symmetry and 
internal symmetry (because estimation of the test statistics involves 
inverting a matrix that is sometimes singular).

An alternative approach to the statistical methods described in 
the preceding is to survey the data using an approach that com-
bines visual assessment of nucleotide content with the results from 
the matched-pairs test of symmetry (87). The visualization of the 
nucleotide content builds in the idea that a de Finetti plot (95) can 
be extended to a tetrahedral plot with similar properties (i.e., each 
observation comprises four variables, where a + b + c + d = 1 and 

3.3.4. Using Matched-
Pairs Tests to Analyze 
Complex Alignments

3.3.4. Using Matched-
Pairs Tests to Analyze 
Complex Alignments

3.3.5. Visual Assessment 
of Compositional 
Heterogeneity

3.3.5. Visual Assessment 
of Compositional 
Heterogeneity



346 Jermiin et al.

0 ≤ a, b, c, d, ≤ 1). Each axis in the tetrahedral plot starts at the 
center of one of the surfaces at value 0 and finishes at the opposite 
corner at value 1. The nucleotide content of a given sequence is 
simply the set of shortest distances from its point within the tet-
rahedron to the surfaces of the tetrahedron (Fig. 16.2). Visual 
assessment of the spread of points shows the extent of compo-
sitional heterogeneity as well as the trends that may exist in the 
data. Rotation of the tetrahedron permits inspection of the scatter 
of points from all angles, thus enhancing the chance of detecting 
distributional trends or sequences that are outliers. Having char-
acterized the distribution of points visually, it is recommended to 
conduct the matched-pairs test of symmetry to determine whether 
the sequences have evolved under stationary, reversible, and homo-
geneous conditions. The inclusion or exclusion of outliers, or a 
larger subset of the data, from the ensuing phylogenetic analysis 
can then be decided on the basis of results from the matched-pairs 
test of symmetry.

The tetrahedral plot is particularly useful for surveys of com-
positional heterogeneity in species-rich alignments. To illustrate 
this, we surveyed an alignment of the mitochondrial cytochrome 
oxidase subunit I gene from 74 species of butterflies—the data are 
part of a longer alignment analyzed by Zakharov et al. (1). When 
all the sites are considered equal (i.e., all the sites were placed in 
the same bin) and the tetrahedron was allowed to rotate, the 74 
points were found scattered tightly in an area where the propor-
tion of A and T are >25% (Fig. 16.3A). The points are clearly 
spread within a confined area, implying that there may be more 
compositional heterogeneity in these data than the initial analy-
sis suggested. To address this issue, we binned the nucleotides 
according to the positions within a codon—three bins were cre-
ated. The distributions of points differ for the first, second, and 
third codon sites, with first codon sites displaying a small amount 
of scatter (Fig. 16.3B), second codon sites displaying hardly any 
scatter (Fig. 16.3C), and third codon sites displaying a lot of scat-
ter (Fig. 16.3D). Rotating the three tetrahedral plots shows that 

Fig. 16.2. The tetrahedral plot with the four sequences from Fig. 16.1, plotted (A) with 
the borders of the tetrahedron highlighted or (B) with the four axes highlighted.
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the centroids differ for the codon sites, thus suggesting that it 
would be necessary to apply three Markov models to these data 
in order to analyze them appropriately within a phylogenetic con-
text. The reason for needing two Markov models for the first and 
second codon sites is that the tetrahedral plots imply that the 
first and second codon sites evolved under different stationary 
conditions.

Having examined the tetrahedral plots for the first, second 
and third codon sites, we completed the visual survey with a 
matched-pairs test of symmetry. Of the 2,775 pairwise tests con-
ducted:

● One hundred forty-seven (147) tests (5.3%) for first codon 
site were found to produce a probability ≤ 0.05, implying 
first codon site is consistent with evolution under stationary, 
reversible, and homogeneous conditions.

● Two tests (0.1%) for second codon site were found to 
produce a probability ≤ 0.05.

● Nine hundred four (904) tests (32.6%) for third codon site 
were found to produce a probability ≤ 0.05, implying third 
codon site is inconsistent with evolution under stationary, 
reversible, and homogeneous conditions.

Given these results, a sensible approach to analyze these data 
phylogenetically would be to apply a time-reversible Markov 

Fig. 16.3. The tetrahedral plot based on the cytochrome oxidase subunit I gene from 
74 butterflies. The plots show the nucleotide composition at (A) all sites, (B) first codon 
sites, (C) second codon sites, and (D) third codon sites.
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model to the first codon sites, another such model to the 
second codon sites, and a more general Markov model to the 
third codon sites.

In conclusion, visual and statistical assessment of the nucle-
otide content in alignments of nucleotides provides consider-
able insight into the evolutionary processes that may have led 
to contemporary sequences—failure to acknowledge this, or to 
incorporate the information that the methods described in the 
preceding can provide, may lead to undetected errors in phylo-
genetic estimates.

It is commonly assumed that the sites in an alignment of nucle-
otides are independent and identically distributed, or at least 
independently distributed. The latter case includes the commonly 
occurring scenario where rate-heterogeneity across sites is mod-
eled using a Γ distribution and a proportion of sites are assumed 
to be permanently invariant. However, the order and number of 
nucleotides usually determine the function of the gene product, 
implying that it would be unrealistic, and maybe even unwise, 
to assume that the sites in the alignment of nucleotides are 
independent and identically distributed.

To test whether sites in an alignment of nucleotides are 
independent and identically distributed, it is necessary to 
compare this simple model to the more complex models that 
describe the interrelationship among sites in the alignment 
of nucleotides. The description of the more complex models 
depends on prior knowledge of the genes and gene products, 
and the comparisons require the use of likelihood-ratio tests, 
sometimes combined with permutation tests or the parametric 
bootstrap.

The likelihood-ratio test provides a statistically sound frame-
work for testing alternative hypotheses within an evolutionary 
context (96). In statistical terms, the likelihood-ratio test statistic, 
∆, is defined as:

∆ =
( )( )
( )( )

max |

max |

L

L

H data

H data
0

1

 [10]

where the likelihood, L, of the null hypothesis (H0), given the 
data, and the likelihood of the alternative hypothesis (H1), given 
the data, both are maximized with respect to the parameters. 
When ∆ > 1, the data are more likely to have evolved under H0—
when ∆ < 1, the data favor the alternative hypothesis. When the 
two hypotheses are nested, that is H0 is a special case of H1,
∆ is < 1, and −2 log ∆ is usually asymptotically distributed under 
H0 as a c2 variate with n degrees of freedom (where n is the extra 
number of parameters in H1)—for a detailed discussion of the like-
lihood-ratio test, see Whelan and Goldman (97) and Goldman and
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Whelan (98). When the hypotheses are not nested, it is necessary 
to use the parametric bootstrap (96, 99), in which case pseudo-
data are generated under H0. In some instances, permutation 
tests may be used instead (100).

The evolution of protein-coding genes and RNA-coding 
genes is likely to differ due to the structural and functional con-
straints of their gene products, so to determine whether sites 
in an alignment of such genes evolved under independent and 
identical conditions, it is necessary to draw on knowledge of the 
structure and function of these genes and their gene products. 
For example, although a protein-coding gene could be regarded 
as a sequence of independently evolving sites (Fig. 16.4A), it 
would be more appropriate to consider it as a sequence of 
independently evolving codons (Fig. 16.4B) or a sequence of inde-
pendently evolving codon positions, with sites in the same codon 
position evolving under identical and independent conditions 

C

Gene      ATGAACGAAAATCTGTTCGCTTCATTCATTGCCCCCACAATCCTAGGCCTACCCGCCGCA
Unit
Category  123123123123123123123123123123123123123123123123123123123123

A

Gene      ATGAACGAAAATCTGTTCGCTTCATTCATTGCCCCCACAATCCTAGGCCTACCCGCCGCA
Unit

D

Gene      ATGAACGAAAATCTGTTCGCTTCATTCATTGCCCCCACAATCCTAGGCCTACCCGCCGCA
Unit
Category  123123123123456456456456456456456456456456456789789789789789

E

Gene      ATGAACGAAAATCTGTTCGCTTCATTCATTGCCCCCACAATCCTAGGCCTACCCGCCGCA
Unit 1
Unit 2

B

Gene      ATGAACGAAAATCTGTTCGCTTCATTCATTGCCCCCACAATCCTAGGCCTACCCGCCGCA
Unit

Fig. 16.4. Models used to describe the relationship among sites in protein-coding genes. A protein-coding gene may be 
regarded as a sequence of independently evolving units, where each unit is (A) a site, (B) a codon, or (C) a site assigned 
its own evolutionary model, depending on its position within a codon. The more complex models include those that 
consider (D) information about the gene product’s structure and function. (Here, categories 1, 2, and 3 correspond to 
models assigned to sites within the codons that encode amino acids in one structural domain, categories 4, 5, and 6 
correspond to models assigned to sites in codons that encode amino acids in another structural domain, and so forth.) 
(E) Overlapping reading frames. (Here, unit 1 corresponds to one reading frame of one gene whereas unit 2 corresponds 
to that of the other gene.)
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(Fig. 16.4C). There are advantages and disadvantages of using 
each of these approaches:

● The first approach (Fig. 16.4A) is fast because the number of 
parameters required to approximate the evolutionary processes 
is small (because R is a 4 × 4 matrix), and it is catered for by a 
large number of substitution models. However, the approach 
fails to consider that the evolution of neighboring sites may be 
correlated, which is highly likely for codon sites.

● The second approach (Fig. 16.4B) is slow because the 
number of parameters needed to model the evolutionary 
process is large (because R is a 64 × 64 matrix), and it is 
catered for by only a few substitution models (74, 101, 102).
However, the approach does address the issue of correlations 
among neighboring sites within a codon.

● The third approach (Fig. 16.4C) is a compromise between 
the previous approaches. It assigns a category to each codon 
position, after which each codon position is assigned its own 
substitution model. The advantage of this approach is that 
codon-site-specific characteristics may be accounted for; for 
example, the nucleotide content and the rates of evolution are 
often found to vary across codon positions. However, the issue 
of correlation among neighboring sites within each codon is 
not adequately addressed.

An alternative to the approaches described in the preceding 
would be to translate the codons into amino acids before subse-
quent analysis. Like the first approach, the polypeptides could be 
regarded as sequences of independently evolving sites and ana-
lyzed, as such using one of the available amino acid substitution 
models (103–113). The approach is appealing because it accounts 
for correlations among neighboring codon sites, but it is slower 
than the first approach (because R is a 20 × 20 matrix) and does 
not account for correlations among neighboring amino acids.

Using protein-coding genes obtained from viral and eukary-
ote genomes, a recent study compared the first three approaches 
and found that the performance of the second approach is supe-
rior to that of the other two; however, the second approach 
comes at an extremely high computational cost (114). The study 
also found that the third approach is an attractive alternative to 
the second approach.

The first three approaches can be extended to account for 
the structure and function of the gene product or the fact that a 
nucleotide sequence may encode several gene products. One way 
to account for the structure and function of the gene product is 
to incorporate extra categories (Fig. 16.4D). Hyman et al. (115),
for example, used six rate categories to account for differences 
between the first and second codon positions (the third codon 
position was ignored) as well as differences among the codons. 



 Phylogenetic Model Evaluation 351

(The discriminating factor is whether the corresponding amino 
acid ultimately would be located in the: (i) lumen between the 
mitochondrial membranes, (ii) inner mitochondrial membrane, 
or (iii) mitochondrial matrix.) The same approach could easily be 
used in conjunction with codon-based substitution models. In 
some cases, a nucleotide has more than one function. For exam-
ple, it may encode more than one product, in which case complex 
models are required to approximate the evolutionary process. In 
the case of mitochondrial and viral genomes, some protein-coding 
genes overlap (Fig. 16.4E), in which case complex models are 
available (70, 77).

Occasionally, there are reasons to suspect that some sites may 
have been temporarily invariant. Under such conditions, it may 
be beneficial to use statistical tests developed by Lockhart et al. 
(80) and a phylogenetic method developed by Galtier (116).
However, the statistical tests rely on prior knowledge allowing 
the investigator to partition the sequences into evolutionarily 
sound groups, and such information is not always available.

In the context of RNA-coding genes, the sequences could 
be viewed as independently evolving sites (Fig. 16.5A), but that 
approach would ignore the structure and function of the gene prod-
uct. A more appropriate method would be to: (i) partition the sites 
according to the features they encode in the gene product, and 
(ii) assign Markov models to the sites in accordance with this par-
tition. For example, for alignments of transfer RNA-coding genes 
it would be necessary to partition the sites into three categories, 

B

Gene      GAACTTGATTTAAAAGCCTATGTTTTGAAAACATAATAAAGAAATATAAATTTTTCT
Unit
Category  222333222222233322333332211122333332222333332222222333333

A

Gene      GAACTTGATTTAAAAGCCTATGTTTTGAAAACATAATAAAGAAATATAAATTTTTCT
Unit

C

Gene      GAACTTGATTTAAAAGCCTATGTTTTGAAAACATAATAAAGAAATATAAATTTTTCT

Category  222333222222233322333332211122333332222333332222222333333

Unit

Fig. 16.5. Models used to describe the relationship among sites in RNA-coding genes. An RNA-coding gene may be 
regarded as a sequence of independently evolving units, where each unit is (A) a site, or (B) a site assigned its own evo-
lutionary model, depending on what feature it encodes. (Here, category 1 corresponds to the model assigned to sites that 
encode the anticodon in a tRNA molecule, category 2 corresponds to the model assigned to sites that encode loops in the 
gene product, and category 3 corresponds to the model assigned to sites that encode the stems in the gene product.) 
An even more advanced approach uses information about stem-coding nucleotides that match each other in the gene 
product. (C) A thin line connects each pair of those nucleotides.
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one for sites encoding the anticodon, another for sites encoding 
loops, and a third for sites encoding stems (Fig. 16.5B). 
This approach may be extended further by incorporating knowl-
edge of sites that encode the stems of RNA molecules (Fig. 16.5C), 
although such sites may be at a distance from one another on the 
gene, their evolution is still likely to be correlated because of their 
important role in forming the stems of RNA molecules.

The sites that help forming the stems in RNA molecules have 
most likely evolved in a correlated manner, and for this reason the 
Markov models assigned to these sites should consider substitu-
tions between pairs of nucleotides rather than single nucleotides 
(i.e., the Markov models should consider changes between 16 
possible pairs of nucleotides: AA, AC, …, TT). Several Markov 
models have been developed for pairs of nucleotides (68, 69, 
71–73, 75, 76, 78) and used to address a variety of phylogenetic 
questions (e.g., 79, 100, 115, 117, 118). Each of these Markov 
models, however, assumes that the sites evolved under stationary, 
reversible, and homogeneous conditions, a potential problem 
that was discussed in a previous section.

Regardless of whether the alignment is of protein-coding 
genes or RNA-coding genes, the inclusion of additional informa-
tion on the structure and function of the gene products leads to 
phylogenetic analyses that are more complex than they would 
have been if the sites were assumed to be independent and iden-
tically distributed. However, the benefit of including this infor-
mation is that the phylogenetic results are more likely to reflect 
the evolutionary pattern and processes that gave rise to the data. 
Finding the most appropriate Markov models for different sites in 
RNA-coding genes and protein-coding genes can be a laborious 
and error-prone task, especially if the sites have not evolved under 
stationary, reversible, and homogeneous conditions. Moreover, 
there is always the possibility that the extra parameters used to 
approximate the evolutionary processes simply fit noise in the 
data rather than the underlying trends (78). To address these 
problems, it is often useful to compare alternative models using 
statistical methodology, such as the parametric bootstrap (96, 99)
or permutation tests (100), both of which are tree-dependent 
methods. We will return to this issue in a following section.

If a partition of sites in an alignment were found to have evolved 
independently under the same stationary, reversible, and homo-
geneous conditions, then there is a large family of time-reversible 
Markov models available for analysis of these sites. Finding the 
most appropriate Markov model from this family of models is 
easy due to the fact that many of the models are nested, imply-
ing that a likelihood-ratio test (96) is suitable for determining 
whether the alternative hypothesis, H1, provides a significantly 
better fit to the data than the null hypothesis, H0.
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For nucleotide sequences, the choice between time-reversible 
Markov models may conform to a decision tree like that shown in 
Fig. 16.6. Assuming a tree and the alignment, the initial test is 
between the JC model (81), which assumes uniform nucle-
otide content, and the F81 model (119), which allows the nucleotide
content to be non-uniform (here the first model corresponds to 
the null hypothesis, whereas the other model corresponds to the 
alternative hypothesis). From a statistical point of view, the differ-
ence is 3 degrees of freedom, so if −2 log ∆ > 7.81 (i.e., the 95% 
quantile of the c2-distribution with 3 degrees of freedom), the F81 
model is favored over the JC model. The next likelihood-ratio test 
is between the F81 model, which assumes one conditional rate of 
change, and the HKY model (120), which assumes two conditional 
rates of change. From the statistical point of view, the difference is 
1 degree of freedom, so if −2 log ∆ > 3.84 (i.e., the 95% quantile of 
the c2-distribution with 1 degree of freedom), the HKY model is 
favored over the F81 model. On the other hand, if −2 log ∆ ≤ 3.84, 
the F81 model would be favored.

The approach outlined in the preceding has been extended 
to cover the family of time-reversible Markov models for nucle-
otide sequences (9), and it is now available also for amino acid 
sequences (10). The approach also allows for the presence of per-
manently invariant sites and rate-heterogeneity across sites, thus 

JC or F81

JC or K80 F81 or HKY

JCK80 or SYM

HKY GTRK80 SYM

HKY or GTRF81

A.

B.

C.

Fig. 16.6. Relationship among models within the family of the time-reversible Markov models. The models are the Jukes 
and Cantor model (JC: (81) ), the Kimura 1980 model (K80: (121) ), the symmetrical model (SYM: (122) ), the Felsenstein 
1981 model (F81: (119) ), the Hasegawa-Kishino-Yano model (HKY: (120) ), and the general time-reversible model (GTR: 
(82) ). The questions that allow us to distinguish these models are: (A) Is the nucleotide content uniform or non-uniform? 
(B) Are there one or two conditional rates of change? (C) Are there two or six conditional rates of change? The degrees 
of freedom associated with questions (A, B) and C is 3, 1, and 4, respectively.
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catering for some of the differences found among sites in phylo-
genetic data.

Although the approach described above appears attractive, 
there is reason for concern. For example, the likelihood-ratio test 
assumes that at least one of the models compared is correct, an 
assumption that would be violated in most cases in which we 
compare the fit of an alignment to all potentially suitable Markov 
models. Other problems include those arising when: (i) multiple 
tests are conducted on the same data and the tests are non-
independent; (ii) sample sizes are small; and (iii) non-nested 
models are compared (for an informative discussion of the prob-
lems, see (123, 124) ). Finally, it is implicitly assumed that the tree 
used in the comparison of models is the most likely tree for every 
model compared, which might not be the case.

Some of the problems encountered when using the hierarchi-
cal likelihood-ratio test are readily dealt with by other methods 
of model selection. Within the likelihood framework, alternative 
Markov models may be compared using Akaike’s Information 
Criterion (AIC) (125), where AIC for a given model, R, is a 
function of the maximized log-likelihood on R and the number 
of estimable parameters, K (e.g., the nucleotide frequency, con-
ditional rates of change, proportion of invariant sites, rate varia-
tion among sites, and the number of edges in the tree):

AIC L K= − ( )( ) +2 2max log | .R data  [11]

If the sample size, l, is small compared with the number of esti-
mable parameters (e.g., l/K < 40), the corrected AIC (AICc) is 
recommended (126). (The exact meaning of the sample size is 
currently unclear but it is occasionally thought to be approxi-
mately equal to the number of characters in the alignment.):

AIC AIC
K K
l Kc = +

+( )
− −

2 1
1

.  [12]

The AIC may be regarded as the amount of information lost 
by using R to approximate the evolutionary processes, whereas 
2K may be regarded as the penalty for allowing 2 K parameters; 
hence, the best-fitting Markov model corresponds to the smallest 
value of AIC (or AICc).

Within the Bayesian context, alternative models may be com-
pared using the Bayesian Information Criterion (BIC) (127),
Bayes factors (BF) (128-130), posterior probabilities (PP) (131,
132) and decision theory (DT) (133), where, for example:

BF
P

Pij
i

j

= ( )
( )
data

data

|

|

R
R

[13]

and

BIC L K l= − ( )( ) +2max log | log .R data  [14]
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A common feature of the model-selection methods that calculate 
BF and PP is that the likelihood of a given model is calculated by 
integrating over parameter space; hence, the methods often rely 
on computationally intensive techniques to obtain the likelihood 
of the model. The model-selection method that calculates PP is 
more attractive than that which calculates BF because the former 
facilitates simultaneous comparison of multiple models, including 
non-nested models. However, the drawback of the model-selection 
method that calculates PP is that, although some Markov models 
may appear more realistic than other such models, it is difficult to 
quantify the prior probability of alternative models (124).

The method for calculating BIC is more tractable than those 
for calculating BF and PP, and provided the prior probability is 
uniform for the models under consideration, the BIC statistics 
are also easier to interpret than the BF statistics (124). The prior 
probability is unlikely to be uniform, however, implying that 
interpretation of the BIC and DT statistics, which is an extension 
of the BIC statistics (133), may be more difficult.

There is evidence that different model-selection methods 
may lead to the selection of different Markov models for phyloge-
netic analyses of the same data (134), so there is a need for more 
information on how to select model-selection methods. Based 
on practical and theoretical considerations, Posada and Buckley 
(124) suggested that model-selection methods should: (i) be able 
to compare non-nested models; (ii) allow for simultaneous com-
parison of multiple models; (iii) not depend on significance levels; 
(iv) incorporate topological uncertainty; (v) be tractable; (vi) allow 
for model averaging; (vii) provide the possibility of specifying pri-
ors for models and model parameters; and (viii) be designed to 
approximate, rather than to identify, truth. Based on these crite-
ria and with reference to a large body of literature on philosophi-
cal and applied aspects of model selection, Posada and Buckley 
(124) concluded that the hierarchical likelihood-ratio test is not 
the optimal approach for model selection in phylogenetics and 
that the AIC and Bayesian approaches provide important advan-
tages, including the ability to simultaneously compare multiple 
nested and non-nested models.

If a partition of sites in an alignment were found to have evolved 
under conditions that are more general than those considered 
by the general time-reversible Markov model, then there are 
only a few methods available for finding appropriate models to 
approximate the evolutionary process. The problem of finding 
such models is difficult and may be further exacerbated if vari-
ation in the alignment is the outcome of several evolutionary 
processes operating across different sites. For example, the sur-
vey of butterfly mitochondrial DNA disclosed that in order to 
analyze these data phylogenetically, it would be necessary to use 
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two time-reversible Markov models and a general Markov model 
to approximate what may have led to the variation in these data. 
(The solution presented here is not necessarily the only suitable 
one. For example, it might be better to employ Markov models 
designed for pairs of nucleotides—in this case, first and second 
codon sites—codons or amino acids (in this case, after translation 
of the codons.)) Were the alignment to be analyzed with other 
alignments, possibly using the Pareto set approach (135), it is 
likely that many Markov models would be required to analyze 
these data—one model for each set of binned sites—and critics 
of the multi-model approach might argue that the data were in 
danger of being over-fitted. (For a discussion of model selection 
and multi-model inference, see (123)).

To address the problems described in the preceding, it is neces-
sary to use approaches that allow us to ascertain whether the mod-
els chosen for different partitions of the alignment are the most 
appropriate, and whether the combination of models is a sufficient 
approximation of the evolutionary processes that gave rise to the 
data. Relevant methods for addressing the issue of fitting multiple 
models to data involve parametric and non-parametric bootstrap 
procedures and therefore are computationally intensive.

The use of the parametric bootstrap to test the appropriate-
ness of a particular Markov model was proposed by Goldman 
(99) and is a modification of Cox’s (136) test, which considers 
non-nested models. The test can be performed as follows:
 1. For a given model, R, use the original alignment to obtain 

the log-likelihood, log L, and the maximum-likelihood esti-
mates of the free parameters.

 2. Calculate the unconstrained log-likelihood, log L*, for the 
original alignment using the following equation:

log * logL
N
N

i

i

N

= ⎛
⎝⎜

⎞
⎠⎟=

∑
1

 [15]

  where Ni is the number of times the pattern at column i occurs 
in the alignment and N is the number of sites in the alignment.

 3. Calculate dobs = log L* – log L.
 4. Use the parameters estimated during Step 1 to generate 

1,000 pseudo-data sets on the tree in question.
 5. For each pseudo-data set, j = 1, …, 1000, calculate log Lj (i.e., 

the log-likelihood under R), log L*j , and dj = log L*j – log Lj.
 6. Determine p, that is, the proportion of times where dj > dobs.

A large p value supports the hypothesis that R is sufficient to 
explain the evolutionary process underpinning the data while 
a small p value provides evidence against this hypothesis.

For the family of time-reversible Markov models, a parametric 
bootstrap analysis may be done with the help of Seq-Gen (137),
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whereas for the more general Markov models of nucleotide sequence 
evolution, the analysis may be performed with the help of purpose-
developed programs (41, 44, 49, 93). Foster (41) and Jayaswal 
et al. (44) used the parametric bootstrap to show that the models 
employed provide a good fit even though the sequences appear to 
have evolved under conditions that are not stationary, reversible, 
and homogeneous. Fig. 16.7A illustrates the results from parametric 
bootstrap analysis for the bacterial data set analyzed by Jayaswal 
et al. (44). If the bacterial sequences had been analyzed using 
time-reversible models, ModelTest (9) would have chosen the 
GTR+Γ model as the most appropriate. However, the result in 
Fig. 16.7A shows that the difference between the unconstrained 
log-likelihood and log-likelihood under the GTR+Γ model is sig-
nificant, thus showing that the GTR+Γ model fails to adequately 
describe the complex conditions under which the data evolved. 
On the other hand, a similar analysis involving the BH+I model 
(44) produced results that show that the BH+I model is an adequate 
approximation to the evolutionary processes that gave rise to these 
bacterial sequences (Fig. 16.7B).

To compare the hypothesis that the sites of an alignment 
have evolved under identical and independent conditions to the 
hypothesis that the nucleotides encode a molecule that neces-
sitates the alignment be partitioned (in accordance with the 
structure and function of the gene product) and the partitions 
be analyzed phylogenetically using different Markov models, a 
permutation test (138) can be performed. A suitable strategy for 
comparing two such hypotheses is described as follows:

240 260 280 300 320 340

Difference in log-likelihood

A

180 200 220 240 260

B

Difference in Log-likelihood

Fig. 16.7. (A) Examples of the results from two parametric bootstrap analyses. Parametric bootstrap results under the 
GTR+Γ model based on 1,000 simulations. For each bootstrap replicate, the difference in log-likelihoods was obtained 
by subtracting the log-likelihood under the GTR+Γ model from the unconstrained log-likelihood. The arrow indicates 
the difference in log-likelihood for the actual data under the GTR+Γ model. (B) Parametric bootstrap results under the 
BH+I model based on 1,000 simulations. For each bootstrap replicate, the difference in log-likelihoods was obtained 
by subtracting the log-likelihood under the BH+I model from the unconstrained log-likelihood. The arrow indicates the 
difference in log-likelihood for the actual data under the BH+I model.
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 1. For a given set of models, R1, R2, …, each of which is applied 
to its own partition of the alignment, calculate the log-
likelihood, log Lobs, of the original alignment.

 2. Generate 1,000 pseudo-data sets by randomizing the order 
of columns in the data.

 3. For each pseudo-data set, j = 1, …, 1000, calculate log Lj
(i.e., the log-likelihood of the pseudo-data under R1, R2,
…).

 4. Determine p, that is, the proportion of times where log Lj
> log Lobs. A small p-value supports the notion that the sites 
should be partitioned and analysed using separate models for 
each partition.

Telford et al. (100) used a modification of the approach described 
above to show that the evolution of the small subunit ribosomal RNA 
genes of Bilateria can be explained best by using two Markov models, 
one for the loop-coding sites and another for the stem-coding sites. 
They also found that paired-sites models (68, 71, 72) were signifi-
cantly better at describing the evolution of stem-coding sites than a 
model that assumes independence of the stem-forming sites.

It is clear that model selection plays an important role in molecu-
lar phylogenetics, in particular in the context of distance, maxi-
mum-likelihood, and Bayesian methods. Given that different 
model-selection methods may pick different models and that 
application of inappropriate models affects many aspects of phy-
logenetic studies, including estimates of phylogeny, substitution 
rates, posterior probabilities, and bootstrap values, it is important 
to be aware of the advantages and disadvantages of each of the 
available model-selection methods.

It is equally important to know that any model that we can 
construct to analyze a set of sequences is extremely unlikely to 
be the true model. Rather, the models that we infer by means of 
prior knowledge of the data and the model-selection methods 
available are at best good approximations of the underlying evo-
lutionary processes. The process of selecting Markov models for 
phylogenetic studies, therefore, should be considered as a method 
of approximating rather than identifying the evolutionary proc-
esses (123, 124). In identifying an adequate approximation to the 
evolutionary processes, it is important to strike a balance between 
bias and variance, where the problem of bias may arise when too 
few parameters are used to approximate the evolutionary processes
and the problem of variance may arise if too many parameters are 

4. Discussion4. Discussion
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used (123, 124). Using model-selection methods that include a 
penalty for including more than the necessary number of para-
meters, therefore, appears very appealing.

Having identified a suitable Markov model and subsequently 
inferred the phylogeny, it is also important to employ the para-
metric bootstrapping procedure to determine whether the esti-
mates of evolutionary patterns and evolutionary processes are 
consistent with the data. This is not done as often as it ought to 
be, although the trend appears to be changing (see e.g., (139) ). 
While using the parametric bootstrap, it is important to note 
that a good fit does not guarantee that the model is correct. For 
example, Jayaswal et al. (44) obtained a good fit between the 16S 
ribosomal RNA from bacteria and a general Markov model that 
does not take into account structural and functional information 
about the gene product.

Finally, it is clear that there is a need for more efficient and 
reliable methods to identify appropriate Markov models for phy-
logenetic studies, in particular for data that have not evolved 
under stationary, reversible, and homogeneous conditions. Like-
wise, there is a need for phylogenetic methods that (i) allow the 
partitions of alignments to be analyzed using a combination of 
Markov models and (ii) allow the parameters of each model to 
be optimized independently (except for the length of edges in 
each tree). Finally, there is a need for a large number of different 
Markov models to bridge the gap between the family of time-
reversible models and the most general Markov models.
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Chapter 17

Inferring Ancestral Gene Order

Julian M. Catchen, John S. Conery, and John H. Postlethwait

Abstract

To explain the evolutionary mechanisms by which populations of organisms change over time, it is 
necessary to first understand the pathways by which genomes have changed over time. Understanding 
genome evolution requires comparing modern genomes with ancestral genomes, which thus necessitates 
the reconstruction of those ancestral genomes. This chapter describes automated approaches to infer the 
nature of ancestral genomes from modern sequenced genomes. Because several rounds of whole genome 
duplication have punctuated the evolution of animals with backbones, and current methods for ortholog 
calling do not adequately account for such events, we developed ways to infer the nature of ancestral 
chromosomes after genome duplication. We apply this method here to reconstruct the ancestors of a 
specific chromosome in the zebrafish Danio rerio.

Key words: Ancestral reconstruction, chromosome evolution, genome duplication, automated workflow.

Conservation of genome structure provides information about 
organismal origin and change over time. Conserved genomic 
islands rafting in a sea of genomic change identify features pro-
tected from variation by natural selection. Investigation of con-
served non-coding regions, for example, has provided extensive 
data on genomic entities that control gene expression and has 
identified genes for small non-translated RNAs (1–3). In con-
trast, genomic blocks that display conserved gene order have 
been investigated less fully.

A pair of organisms can show conservation of genome struc-
ture at several different levels. Level 1 is the conservation of syn-
tenies (syn, same; ten, thread) between a pair of genomes. In a 
conserved synteny, two or more genes that are syntenic (on the 
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same chromosome) in one genome have orthologs that are also 
on a single chromosome in another genome. (Orthologs are 
defined as genetic entities in different genomes descended from 
a single entity in the last common ancestor of those genomes. 
They can be defined operationally as reciprocal best hits (RBH) 
in BLAST searches (4, 5), although occasionally errors are made 
in the case of rapidly evolving genes.) Even if many genes intervene
between the pair of genes in one or the other genome, the organ-
ization of two pairs of orthologs on a single chromosome in both 
genomes meets the criterion of conserved synteny. Conserved 
syntenies suggest the hypothesis that all members of the group 
of genes were syntenic in the last common ancestor of the two 
genomes. The alternative, less parsimonious (but undoubtedly 
sometimes true) hypothesis is that the genes were separate in 
the last common ancestor and chromosome rearrangements that 
occurred independently in both lineages brought the members of 
the group together fortuitously.

Somewhat more restrictive, in Level 2 a group of three or 
more genes that shows conserved syntenies could in addition dis-
play conserved gene order: the order of genes in one genome 
is the same as the order of their orthologs in the other genome 
(Fig. 17.1). Changes in gene order would reflect an inversion 
involving at least two genes in one of the genomes with respect 
to the other. Level 3 is the conservation of transcription orienta-
tion within a group of genes that possesses conserved gene order. 
Loss of conserved orientation reflects an inversion involving a 
single gene in the lineage of one genome relative to the other. 
The most restrictive condition, Level 4, involves a conserved 
genomic block in which all genes in the block in one species have 
orthologs that are in the same order and have no intervening or 
missing genes in the other species.

Fig. 17.1. Levels of genomic conservation. Levels 1 through 4 represent increasing amounts of conserved synteny. 
Whereas level 1 requires only that two orthologous genes occur on homoeologous chromosomes, level 2 requires con-
served gene order; level 3 additionally requires conserved transcription orientation, and level 4 requires no intervening 
genes within the conserved block.
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Conservation of gene order can reflect either constraint due 
to selection or simple failure by chance to fix chromosome rear-
rangements disrupting the block. If fully conserved genomic 
blocks persist in different lineages over increasing time periods, 
then selection becomes an increasingly probable mechanism for 
the maintenance of conserved blocks.

Probably the best-studied examples of conserved gene order 
in the human genome are the HOX clusters, which provide an 
example of gene order conserved due to functional constraints. 
Human HOX cluster genes show gene order conservation both 
within the human genome and among vertebrates. Within the 
human genome, the four partially degraded HOX clusters arose 
from two consecutive genome duplication events, called R1 
and R2 (Fig. 17.2), that occurred in early vertebrate evolu-
tion about 500 million or more years ago (6–9). The HOXA, 
HOXB, HOXC, and HOXD clusters are descended from a sin-
gle cluster of 14 contiguous HOX genes present in an ancient 

Non-vertebrate Chordates Vertebrates

zebrafish pufferfish humanamphioxus

Modern teleost
chromosomes

Modern human
chromosomes

Ancestral post-
duplication teleost
chromosomes

Ancestral pre-
duplication
chromosome

Ancestral pre-duplication 
chromosome

Ray-fin fish Lobe-fin fish

R2

R3

R1

Cephalochordates

Fig. 17.2. Genome duplication events in chordate evolution. An ancestral pre-duplication chromosome duplicated twice 
(R1 and R2) to form four chromosome segments, only one of which is diagrammed higher in the figure. The R3 genome 
duplication event occurred in the ray-fin lineage, providing teleost fish with duplicates of human genes.
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non-vertebrate chordate genome similar to the modern amphioxus 
genome (10–13). Two genes derived from a gene duplica-
tion event within a lineage, such as the genes that make up 
the HOX clusters, are called paralogs. Moreover, each human 
HOX cluster is also conserved in gene order with the ortholo-
gous HOX cluster of other vertebrates, for example, the gene 
order of the human HOXA cluster is conserved with the Hoxa
cluster of mouse as well as the hoxaa cluster of zebrafish 
(14–18). HOX gene clusters have probably been preserved 
due to the sharing of regulatory elements by several genes in 
the cluster (19).

In addition to the two rounds of genome duplication 
that occurred near the time of the vertebrate radiation (R1 
and R2), an additional round of genome duplication (R3) 
occurred at the base of the radiation of teleost fish (the 
crown group of ray-fin fish, such as zebrafish, and pufferfish, 
distinct from basally diverging ray-fin fish, such as sturgeon 
and gar) (15, 20–24). This R3 event (see Fig. 17.2) gener-
ated duplicate chromosome segments in teleosts correspond-
ing to single chromosome segments in humans and other 
mammals. Duplicated chromosomes are called homoeologous 
chromosomes. (These are not to be confused with a pair of 
homologous chromosomes, which align and exchange dur-
ing meiosis in a diploid; homoeologous chromosomes are 
a pair of chromosomes derived from a single, pre-duplica-
tion chromosome in an ancestral organism.) The R3 genome 
duplication event produced, for example, duplicate copies of 
the human HOXA cluster in teleosts (hoxaa and hoxab) sur-
rounded by duplicated copies of many additional genes on 
the homoeologous chromosomes (15, 25–28).

Other examples of gene clusters maintained by selection 
include hemoglobin genes and DLX genes, but the extent of 
conserved gene order is not yet fully investigated, and the relative 
importance of selection versus chance in regions of conserved 
gene order is currently unknown. Investigations of gene order in 
vertebrate lineages that diverged from the human lineage long 
ago could help to narrow the number of regions in which selection
is a strong hypothesis for preserved gene order. To contribute 
to an understanding of these issues, we have begun to investi-
gate the conservation of gene orders and inference of ancestral 
gene orders in fish genomes compared with the human genome. 
This section discusses software developed to identify paralogous 
chromosome segments within species as well as orthologous 
chromosome segments between species. We then use that software 
to identify conserved segments between teleost species, infer 
ancestral gene orders in the pre-duplication teleost genome, and 
infer genome content in the last common ancestor of teleost fish 
and mammals.
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In early studies examining conserved synteny, such as the iden-
tification of HOX clusters, the burden of labor was weighted 
heavily toward laboratory work, with the objective of locating 
and sequencing genes. Initial analyses involved small numbers 
of genes, and the management of these data could be done in 
an ad hoc manner. Analysis involving homology searches and 
small-scale phylogenetic tree building could be accomplished on 
a case-by-case basis, and these were generally used to confirm 
hypotheses that had been determined a priori.

The availability of large-scale genomic data has inverted this 
equation and presents several new challenges with respect to the 
management, storage, and interpretation of genomic data. For exam-
ple, consider a scenario to identify all the genes in mouse that are 
structurally similar to genes on Human chromosome 17 (Hsa17). 
If we were only interested in a single gene, we could quickly solve 
the problem using a Web-based tool to perform a remote homology 
search. But, when we scale the problem to consider a full chromo-
some, we face an explosion in both computational resources and 
data storage. Hsa17 contains approximately 1,800 genes. Since 
some of those genes produce multiple transcripts, the total number 
of sequences to examine is over 2,400. Each homology search can 
return tens of results containing numerical data and sequence align-
ments that are thousands of characters long. Each additional chro-
mosome and organism we add to the analysis increases the problem 
size linearly, whereas each additional homology search increases the 
problem size by an order of magnitude.

In this environment, it becomes essential to employ a sys-
tem that allows disparate parts of an analysis to be encapsulated, 
allowing each step to be run independently, resumed, and ideally, 
run in parallel with other steps. Most challenging of all is the 
presentation of the results generated by each step in a way that 
can be visualized and readily comprehended.

Reconstructing ancestral chromosomes requires us to examine 
modern genomes from several organisms and infer their ancestral 
states. At its core, this is an exercise in large-scale sequence match-
ing, but we must be able to differentiate between several different 
types of evolutionary events. First, we must take into account the 
historical, phylogenetic relationships of organisms we are exam-
ining. For closely related vertebrates (e.g., human versus mouse), 
generally there should be a one-to-one correspondence between 
genes, because the R1 and R2 genome duplication events in early 
vertebrate evolution occurred prior to the divergence of mam-
mals. Additionally, since human and mouse diverged about 100 
million years ago, they are more closely related to each other 
than either is to fish, which diverged from the lineage leading to 
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mammals about 450 million years ago. Thus, we expect sequence 
similarity in our homology searching to be much higher among 
mammals than between fish and mammals (29).

When we include organisms such as the zebrafish Danio rerio,
however, the picture becomes more complex. Although the rela-
tionship of mouse to human genes is usually one-to-one, because 
of the R3 genome duplication event at the beginning of the tel-
eost radiation (see Fig. 17.2), the relationship of zebrafish genes to 
human genes is often two-to-one, although 70% to 80% of genes 
have returned to single copy after the genome duplication (30).
In addition, since the teleost/mammalian divergence occurred so 
much earlier than that of the rodent/primate, we should expect 
lower sequence similarity in homology searches, more lost genes 
in one or the other lineage, more genes that have diverged too far 
to be reliably classified as orthologs, and more genes duplicated 
independently in each lineage after they diverged.

Importantly, when including organisms that have experi-
enced a third genome duplication, we must take care to differ-
entiate between ancient paralogous genes that originated in the 
first and second genome duplications from those that originated 
in the most recent genome duplication. Further, we must be able 
to differentiate very recent tandemly duplicated genes from those 
duplicated in the third genome duplication.

The types of evolutionary relationships our software analysis 
must detect are shown in Fig. 17.3. The bottom half of the figure 
is a gene tree that shows evolutionary events that led to the cur-
rent genomes for human (Hsa) and zebrafish (Dre): two rounds of 
genome duplication (R1 and R2), speciation (S), and a third round 
of genome duplication (R3) in the teleost lineage. In the top half 
of the figure, a vertical line represents a modern chromosome. The 
first row, labeled 4:8, is the ideal situation, and might be seen for 
genes that encode essential biological functions, e.g., for HOX clus-
ters: all four Hsa descendants and seven of the eight Dre descend-
ants of the original ancestral clusters have survived (the eighth 
cluster has survived in pufferfish). Assuming the methods that pair a 
gene with its closest relative are accurate, and that reciprocal closest 
sequence relatives are orthologs, the software will correctly match 
each human gene with the correct pair of zebrafish co-orthologs. 
The second row (1:4) shows a situation in which there are more 
zebrafish genes than surviving human genes, but again the software 
will make the correct choice because the zebrafish gene pair that has 
a human ortholog should be more similar to the surviving human 
gene than the zebrafish gene pair lacking a human ortholog. The 
third row is an example for which the software can identify only one 
ortholog for each of several human paralogs.

In some evolutionary scenarios, the software might mistak-
enly assign orthology relationships. The fourth row (labeled 1:2) 
illustrates a situation in which the software might erroneously 
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identify two zebrafish genes as co-orthologs of a human gene: 
the two zebrafish genes are each other’s “closest living relatives,” 
but their last common ancestor preceded R3. The last two lines 
illustrate two additional ways in which the software could mistak-
enly assign orthology relations. In one case, the best result of our 
homology search might be to paralogs (e.g., during the period of 
relaxed selection immediately following R3 the zebrafish genes 
might have changed in a way that makes it difficult to distinguish 
them). In another case, a recent tandem duplication (here shown 
as a duplication in the zebrafish genome) can create an extra 
gene, and it is possible the software will erroneously identify the 
tandem duplicates as co-orthologs from a genome duplication, 
unless position in the genome is taken into account.

Before we can reconstruct ancestral chromosomes, we must iden-
tify homoeologous chromosomes within a species, which requires 
identifying paralogs from the most recent genome duplication 
event. A major unsolved problem, however, is the assignment 
of zebrafish paralogs to their proper duplication event (R1, R2, 
or R3). The process uses three organisms: a primary organism
(zebrafish in this case) and two outgroups. The recent outgroup is 
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Fig. 17.3. Orthologs and paralogs. The box in line 4:8 indicates a human gene’s zebrafish 
co-orthologs that arose in the R3 genome duplication event. The box in line 4:3 indi-
cates two human paralogs arising from the R2 genome duplication event and their 
single-copy zebrafish orthologs. The box in line 1:n shows a pair of recent tandem 
duplicates of one of two zebrafish co-orthologs that arose in the R3 event.
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an organism that diverged from our primary organism after 
the most recent duplication event, and we will use the green-
spotted pufferfish Tetraodon nigroviridis, whose genome sequence 
is nearly complete (31). An organism that diverged from our pri-
mary organism prior to the most recent duplication can be used 
as an ancient outgroup; in this case we use the human genome 
because of its high quality of annotation.

Step 1 is to identify genes that are highly similar within our 
primary organism, defined as the reciprocal best hits (RBH) of a 
within-species BLASTn (Fig. 17.4A1). This preprocessing step 
allows us to identify pairs of genes within the organism that are 
most closely related (see Fig. 17.4A, P1 and P2), the majority of 
which should have been produced in the most recent genome 
duplication event R3, although some may be recent tandem 
duplicates or paralogs from the R1 or R2 events.

Next, we take the sister genes that are the output of Step 1 
in our primary organism and perform a BLASTp analysis against 
the ancient, non-duplicated outgroup, the human genome (see 
Fig. 17.4A, arrows labeled 2a and 2b). If both sisters P1 and P2
in the primary organism match a single ancient outgroup gene (as 
for gene O1 in Fig. 17.4A, Arrows labeled 2a), and gene O1 has 
as two best hits genes P1 and P2 (see Fig. 17.4A, Arrows labeled 
2b), then P1 and P2 are co-orthologs of outgroup gene O1 and 
were produced after the divergence of the primary species and the 
ancient outgroup. This co-orthologous pair could have originated 
either in R3 (the boxed comparison of Fig. 17.3, line 4:8) or in a 
recent tandem duplication event (as the boxed pair in Fig. 17.3,
line 1:n). These possibilities are distinguished by location: The R3 
event will produce duplicates on different chromosomes, whereas 
tandem duplication produces duplicates that are adjacent, barring 
subsequent specific types of chromosome translocations.

If the two sister genes (P1 and P2) in the primary organism 
have as RBH different ancient outgroup genes (O1 and O2 in Fig. 
17.4B), then the pipeline has identified a pair of ancient paralogs 
produced in the first or second round of genome duplication (as 
for the boxed genes in Fig. 17.3 line 4:3). Finally, if only one 
member of the pair has an RBH with the outgroup, then the ori-
gins of this gene pair are ambiguous (see Fig. 17.4C).

Having completed the identification of co-orthologs in the 
primary species, we next identify orthologs of the primary spe-
cies’ genes in the recent outgroup, in this case the pufferfish, by 
RBH. This final identification concludes data collection, and we 
then proceed in the following way.

We compare the gene content of chromosomes in the pri-
mary species to the genome of the recent outgroup to infer the 
content of the ancestral post-duplication teleost chromosomes. 
This comparison reduces two pairs of modern chromosomes to a 
single, ancestral post-duplication pair.
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We next infer the content of the ancestral pre-duplication 
chromosome of a ray-fin (Actinopterygian) fish, which existed 
about 300 million years ago, by collapsing the post-duplication 
pair of chromosomes.

Finally, we compare the pre-duplication ray-fin fish chromo-
some to our ancient outgroup, the lobe-fin (Sarcopterygian) fish 
called Homo sapiens. This final comparison allows us to infer the 
content of the ancestral bony fish (Osteichthyes) chromosome 
that existed about 450 million years ago.

As described, to infer the content of ancestral chromosome 
sequences, we must conduct two major analyses, the identi-
fication of paralogs within a species and the identification of 
orthologs between species. A “software pipeline” conducts each 
analysis, manages the data, and runs the bioinformatic applica-
tions that process the data. The project described in this chapter 
uses a system known as PIP (pipeline interface program) (32), a 
generic framework that allows us to create many different “pipe-
lines” by combining arbitrary analysis Stages in different orders 

2.3. The Analysis 
Pipeline
2.3. The Analysis 
Pipeline

P1 O1P2RBH

BH
BH

BH1
BH2

A.  Co-orthologs (mostly R3 Duplicates)

P1 O2P2RBH

RBH
RBH

B.  Ancient paralogs (R1 or R2 Duplicates)

P1 O1

RBH
C.  Ortholog (ambiguous origin)

O1RBH

1

2a

2b

Fig. 17.4. Operational definitions of ancestral relationships in our pipeline.
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(see Note 1) (for a more in-depth look at computational pipe-
lines, see Chapter 24 of Volume 2). The initial data set (gene 
sequences and annotations plus parameters for the various 
genomic applications) are stored in a relational database. PIP 
then runs each application in turn, passing results from one 
analysis Stage as inputs to the next analysis Stage (Figs. 17.5
and 17.6), archiving the results of each Stage in the database. 
Each of the two major analysis steps, identifying paralogs and 
identifying orthologs, is embodied in its own pipeline, the Para-
log Identification pipeline (PARA) and the Ortholog Identifica-
tion pipeline (ORTH) (see Note 2).

Prior to executing either pipeline, we acquire full genomic 
data for each of our organisms from an authoritative source, in 
this case Ensembl (http://www.ensembl.org/) and place it into 
a locally accessible database. Each gene has associated attributes, 
including its unique identifier, cDNA nucleotide sequence, and 
amino acid sequence of the protein. We prepare several search-
able BLAST databases, one for each genome we will be examin-
ing. In both pipelines, BLAST searches were performed with the 
WU-BLAST program (http://blast.wustl.edu).

The purpose of the PARA pipeline is to identify paralogs 
in the primary species. In the first stage of the PARA pipeline 
(Forward BLAST, see Fig. 17.5), a nucleotide BLAST search is 
performed for each gene on our chromosome of interest (the 
query chromosome). For each query sequence, the PIP saves the 
five best matches from our subject genome. The second stage 
(Reverse BLAST) reverses the search: The new query sequences 
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Fig. 17.5. Paralog Identification Pipeline (PARA). The PIP manages the input and output 
data of each Stage.

Forward
BLAST

Reverse
BLAST

Ortholog
Analysis

Clustering

1 2 3 4Stage:

Fig. 17.6. The Ortholog Identification Pipeline (ORTH) consists of four major analytical 
stages.
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now become the set of five best hits generated in the first stage and 
the original query genome now becomes the subject genome.

In Stage 3 (Paralog Analysis), the pipeline considers results 
from the intra-organism BLAST and identifies pairs of genes that 
may be recent duplicate genes, or sister genes, based on recipro-
cal best hit. For each gene X, the Paralog Analysis Stage considers 
the five top hits for the gene produced in the forward search. For 
each hit gene Y1…Y5, the stage checks to see if X is the top hit 
in the reverse search. If so, the searching stops and X and Y are 
considered paralogs. In the strictest sense, a reciprocal best hit 
algorithm should only accept the best hit in the forward direction 
and in the reverse direction, i.e., Y should be X’s top hit and 
X should be Y’s top hit. When dealing with large gene families and 
duplicated genomes, however, it is common to have a number 
of hits that all score highly and are almost indistinguishable from 
one another. Examining the top several hits allows us some flex-
ibility. These initial gene pairs correspond to the predicted recent 
paralog genes, P1 and P2, in Fig. 17.4. Additionally, the Paralog 
Analysis Stage conducts a basic classification to identify gene pairs 
that fall on the same chromosome versus those that fall on differ-
ent chromosomes to find potential tandem duplicate gene pairs.

An understanding of the relationship between the two mem-
bers of the identified gene pair comes from Stages 4 and 5 (see
Fig. 17.5), a reciprocal best hit analysis against an outgroup 
organism, represented by O1 and O2 in Fig. 17.4. In cases in 
which no gene pair appeared in Stages 1–3, Stages 4 and 5 also 
compare single genes against the outgroup to identify genes for 
which the paralog was lost at some point in the past. In Stage 6, 
the PARA pipeline examines the output from both reciprocal best 
hit analyses, the within-species and outgroup RBHs, and decides 
which duplication event, (R1/R2, or R3) produced the gene 
pairs. These relationships are specified in Fig. 17.4. Finally, the 
query gene pairs are clustered with the outgroup genes to find 
common chromosomal segments between them. The clustering 
process is described in more detail in the following.

The purpose of the ORTH pipeline is to understand the his-
torical relationships of paralogs identified in the PARA pipeline 
by identifying orthologs in an appropriate outgroup. The ORTH 
pipeline starts off in a manner similar to the PARA pipeline, 
with forward and reverse BLAST search stages. In contrast to 
the PARA pipeline, however, the ORTH pipeline uses a protein 
BLAST to perform reciprocal searches between organisms (see
Fig. 17.6, Stage 1 and 2). A BLAST of protein sequence rather 
than nucleotide sequence returns similarities in more distantly 
related organisms due to the degeneracy of the genetic code.

The third step (Ortholog Analysis) identifies pairs of genes 
between the query and subject genomes that are thought to be 
orthologs because they are reciprocal best hits. This identification is 
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done in a manner similar to the Paralog Analysis and Co-Ortholog 
Analysis Stages in the PARA pipeline.

In the final stage (Clustering), we use a clustering technique 
that allows us to draw conclusions about the levels of conserved 
syntenic layout and conserved gene order and construct a set 
of comparative maps between two different species. To cluster 
the predicted orthologs, we construct a gene homology matrix 
(33). To create the matrix, we plot the position of each gene on 
the query chromosome along the X axis and the position of the 
orthologous gene on the predicted chromosome along the Y axis 
(Fig. 17.7a). We traverse the length of the query chromosome, 
looking for sets of genes that occur near each other on the subject 
chromosome. We employ a sliding window to allow gaps of user-
defined size between the pairs of ortholog genes. Each time we 
identify an ortholog pair, we slide the window up to that pair and 
begin searching for the next pair. If the next pair appears before 
we reach the end of the window, we continue the cluster and look 
for the next member. Otherwise, we record the current cluster 
and begin searching for the next one. Clusters appear as diagonal 
lines on the plots. An uninterrupted slope indicates conserved 
gene order, and the reversal of slope from positive to negative 
indicates an inversion.

Execution of the two analysis pipelines identified pufferfish
orthologs of zebrafish genes, zebrafish orthologs and co-orthologs

Fig. 17.7. Conservation of gene orders for zebrafish chromosome DreLG3 and the pufferfish chromosome Tni3. (A) Chro-
mosome orthology matrix, each point represents a gene pair that is orthologous between zebrafish, plotted by location 
on the DreLG3 along the horizontal axis, and pufferfish chromosome Tni3, position plotted along the vertical axis. 
(B) Identified clusters on the orthologous chromosomes, DreLG3 and Tni3 respectively. Chromosomal segments that are 
inverted with respect to their local environments appear in light gray on Tni3.
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of human genes, pufferfish orthologs and co-orthologs of human 
genes, gene pairs within each species derived from tandem 
duplications, and gene pairs derived from genome duplications. 
In addition, the analysis assigned each gene pair to a specific 
genome duplication event and constructed comparative chro-
mosome maps. We used this analysis pipeline to reconstruct 
partially the ancestral chromosome history of one zebrafish 
chromosome.

The initial focus was to reconstruct the ancestral chromosome and 
gene orders for the Danio rerio Linkage Group 3 (DreLG3), one 
of the 25 zebrafish chromosomes. The pipeline started with data 
from the zebrafish genome sequence version Zv6 available from 
the Sanger Institute Zebrafish Genome Project (http://www.
ensembl.org/Danio_rerio/). The pipeline first identified paralo-
gous genes within the Danio rerio genome to infer chromosome 
segments that constitute the most likely paralogon (chromosome 
segments resulting from duplication) (34) produced in the R3 
duplication event. To confirm the predicted paralogs, the pipe-
line compared each duplicate against a pre-duplication outgroup 
(Homo sapiens) to ensure that the pair of genes originated with 
the R3 duplication. We operationally define two genes as paralogs 
in zebrafish if they both hit the same gene in the human genome 
during a reciprocal best hit analysis (see Fig. 17.4A). Homo sapiens
genomic data was taken from NCBI build 36, version 1, available 
from Ensembl (http://www.ensembl.org/Homo_sapiens/). 
This analysis yielded Danio rerio Linkage Group 12 (DreLG12) 
as the most likely DreLG3 paralogon. Figure 17.8 Step 1a shows 
that genes distributed along the full length of DreLG3 have 
duplicates distributed along the full length of DreLG12, but that 
the order of paralogs is quite different in the two homoeolo-
gous chromosomes, as evidenced by the crossing of lines that join 
paralogs. These types of differences in gene order would occur if 
many chromosome inversions occurred on both homoeologous 
chromosomes since the R3 genome duplication event.

Next, we took genes from DreLG3 and DreLG12 and searched 
for orthologous genes in pufferfish, using version 7 also from 
Ensembl (http://www.ensembl.org/Tetraodon_nigroviridis/). 
Because the identification of orthologs does not depend on 
which duplication event produced them, there is no need to com-
pare the orthologous predictions against an outgroup. The rule 
followed in the current pipeline is simply that each gene is recip-
rocally the other’s best BLAST hit. This analysis yielded Tni2 as 

3. Application3. Application
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most closely related to DreLG3 and Tni3 as most closely related 
to DreLG12 (see Fig. 17.8, Steps 2a and 2b). The principle of 
transitive homology (33) demands that the chromosome homoe-
ologous to Tni2 would be Tni3, and our data verified this predic-
tion (see Fig. 17.8, Step 1b).

The distribution of orthologs revealed several features with 
implications regarding the mechanisms of chromosome evolu-
tion. First, zebrafish chromosomes appear to be stuffed into short 
regions on pufferfish chromosomes (see Fig. 17.8, Step 3a). 
This fits with the dramatic diminution of pufferfish genomes, a 
derived feature achieved by decreasing the length of introns and 
intergenic regions (35).

The second result apparent from the analysis is that gene 
order on DreLG3 matches gene order on Tni3 far better than 
gene order on DreLG3 matches gene order on DreLG12. This 
result would be predicted by the hypothesis that fewer inversions 

Fig. 17.8. Transitive search for homoeologous and orthologous chromosome segments. 
Homoeologous chromosomes are identified within either zebrafish or pufferfish (Steps 
1a and 1b), and orthologous chromosomes between zebrafish and pufferfish (Steps 2a 
and 2b).
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occurred since the speciation event that produced the diverging 
zebrafish and pufferfish lineages (producing DreLG3 and Tni3) 
than occurred since the genome duplication event that pro-
duced DreLG3 and DreLG12. If one assumes that the rate of 
the fixation of inversions in populations is roughly constant over 
time and between lineages, then these results suggest that the 
R3 genome duplication event was substantially earlier than the 
zebrafish/pufferfish speciation event.

Third, the analysis shows that nearly all pufferfish orthologs 
of DreLG3 occupy only the lower portion of Tni3, and nearly all 
pufferfish orthologs of DreLG12 reside only in the upper part of 
Tni2 (see Fig. 17.8, Steps 3a and 3b). Two possible hypotheses 
can explain these distributions. According to the pufferfish fusion 
hypothesis, the last common ancestor of zebrafish and pufferfish 
had a chromosome like DreLG3 (or DreLG12), and in the puff-
erfish lineage, this chromosome became the lower part of Tni3 
(or the upper part of Tni2), which joined by a translocation event 
an unrelated chromosome that became the top portion of Tni3 
(or lower part of Tni2) (Fig. 17.9A). The alternative hypoth-
esis, the zebrafish fission hypothesis, is that the last common ances-
tor of zebrafish and pufferfish had a chromosome like Tni3 (or 
Tni2), and that in the zebrafish lineage, this chromosome broke 
roughly in half, yielding DreLG3 from the lower half of Tni3, 
and DreLG12 from the upper half of Tni2 (see Fig. 17.9B).

The pufferfish fusion hypothesis and the zebrafish fission 
hypothesis make different predictions for the nature of the puffer-
fish chromosomes that are not related to DreLG3 and DreLG12. 
According to the pufferfish fusion hypothesis (see Fig. 17.9A),

A. Pufferfish fusion hypothesis B. Zebrafish fission hypothesis
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Ray-fin fish
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Fig. 17.9. Two hypotheses for the reconstruction of zebrafish and pufferfish chromosomes. Portions of DreLG3/12 and 
Tni2/3 chromosomes (in black) originated in a common, pre-duplication ancestor. (A) The pufferfish fusion hypothesis 
states that the remaining portions of Tni2 and Tni3 (in gray) are unrelated to one another because the fusion events that 
created them were independent and post-duplication. (B) Alternatively, the zebrafish fission hypothesis states that the 
remaining portions of Tni2 and Tni3 would be orthologous to the same portion of the human genome as they would have 
been part of the same ancestral pre-duplication chromosome. In this case the pipeline suggests the fission hypothesis 
to be more parsimonious.
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the non-DreLG3/12 portion of pufferfish chromosomes Tni2 
and Tni3 (gray) would most likely be unrelated to each other 
because the fusion events that created Tni2 and Tni3 would have 
occurred independently of each other. Under the zebrafish fission 
hypothesis, however (see Fig. 17.9B), the non-DreLG3/12 por-
tions of pufferfish chromosomes Tni2 and Tni3 (gray) would be 
orthologous to the same portion of the human genome because 
they would have been part of the same ancestral pre-duplication 
chromosome.

The pipeline shows that the non-DreLG3 portion of Tni3 
(corresponding to DreLG1) (see Fig. 17.10A), and the non-
DreLG12 portion of Tni2 (orthologous to DreLG9) (see Fig.
17.10B) are both orthologous to the long arm of human chromo-
some two (Hsa2q, see Fig. 17.10C,D). This type of relationship 
would be expected according to the zebrafish fission hypothesis 
but not according to the pufferfish fusion hypothesis. Therefore, 
we conclude that the ancestral preduplication chromosome that 
was the ancestor to DreLG3 consisted of a chromosome that was 
substantially similar to the sum of the genetic content of puff-
erfish chromosomes Tni2 and Tni3. This result is somewhat 
surprising because T. nigroviridis has 21 chromosomes, whereas 
zebrafish and most other teleosts have 25 (27), which is expected 
if chromosome fusion occurred more frequently in the pufferfish 
lineage than in most teleosts. Thus, although the zebrafish fission 
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hypothesis works best for this case, the answer is likely to be quite 
different for other chromosomes.

The best way to finalize the inference of the ancestral chro-
mosome is to analyze the situation in closely related outgroups, 
including a post-R3 teleost outgroup and a pre-R3 non-teleost 
ray-fin outgroup. Although appropriate outgroup lineages exist, 
including for post-R3 the Anguilliformes (eels) and the Oste-
oglossiformes (butterfly fish and bonytongues), and the pre-R3 
outgroups Amiiformes (bowfin) and Semionotiformes (gars) 
(36, 37). Unfortunately none have available genomic resources 
necessary to resolve the issue.

Finally, the analysis reveals two special regions of puffer-
fish chromosome Tni2 that have extensive regions of conserved 
gene order, one at about 9 Mb and one at about 11 Mb. The 
corresponding regions in human occupy about 9 Mb and about 
30 Mb of Hsa2q, remarkably long conserved regions (at least 
14 and 54 genes, respectively) preserved for a remarkably long 
time. Future challenges will be to understand the mechanisms 
for this preservation and identify other similar regions on other 
chromosomes.

The bioinformatic pipeline described here provides an initial 
step to reconstruct chromosome content and gene orders in 
ancient vertebrate chromosomes. Several additional features 
should be added to complete the analysis. First, the reciprocal 
best hit approach has several deficiencies, some of which can 
be overcome by the implementation of phylogenetic analysis to 
define orthologs and sister paralogs. Second, ancestral chromo-
somes reconstructed by the comparison of zebrafish and puff-
erfish chromosomes would be substantially more robust if data 
from newly sequenced teleost genomes is taken into account, 
namely medaka and stickleback. Third, genome sequence from 
an extant ray-fin fish whose lineage diverged from teleosts 
before the R3 event is essential as an outgroup to reconstruct 
the genomic constitution of an ancient ray-fin fish. The appli-
cation of the completed pipeline will help us to describe what 
happened in vertebrate chromosome evolution and to identify 
chromosome regions whose gene order has been conserved 
much longer than is normal. These identified regions will allow 
us to develop hypotheses to explain what maintains gene order 
and hopefully to perform experiments to understand the evolu-
tionary mechanisms that preserve the gene order of a chromo-
some segment over time.

4. Conclusions4. Conclusions
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 1. PIP is agnostic when it comes to the origin of an analysis 
stage. It can be written in any language and simply needs to 
be an executable program that reads tab-separated records as 
input, and writes tab-separated records as output. In order 
to infer ancestral chromosomes, we have written PIP stages 
that are simple Perl programs, on the order of tens of lines, 
and we have written stages that are C++/Perl hybrids that 
run in parallel on a compute cluster.

 2. When designing new Stages, be careful not to duplicate 
existing work; libraries exist to handle common tasks such as 
running BLAST or CLUSTALW as well as for parsing data 
files such as FASTA. For Perl, consider using the BioPerl 
modules (http://bioperl.org); for Python, consider BioPython
(http://biopython.org); and for Ruby, consider BioRuby 
(http://bioruby.org).
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Chapter 18

Genome Rearrangement by the Double Cut 
and Join Operation

Richard Friedberg, Aaron E. Darling, and Sophia Yancopoulos

Abstract

The Double Cut and Join is an operation acting locally at four chromosomal positions without regard 
to chromosomal context. This chapter discusses its application and the resulting menu of operations for 
genomes consisting of arbitrary numbers of circular chromosomes, as well as for a general mix of linear 
and circular chromosomes. In the general case the menu includes: inversion, translocation, transposi-
tion, formation and absorption of circular intermediates, conversion between linear and circular chro-
mosomes, block interchange, fission, and fusion. This chapter discusses the well-known edge graph and 
its dual, the adjacency graph, recently introduced by Bergeron et al. Step-by-step procedures are given 
for constructing and manipulating these graphs. Simple algorithms are given in the adjacency graph for 
computing the minimal DCJ distance between two genomes and finding a minimal sorting; and use of 
an online tool (Mauve) to generate synteny blocks and apply DCJ is described.

Key Words: Genome rearrangements, gene order, Mauve, synteny, inversion, reversal, transloca-
tion, transposition, block interchange, fission, fusion.

Comparative analyses of genomes have identified regions of simi-
larity or “conserved segments” (1) among species, which may be 
scrambled from one genome to another. Such regions range from 
a few nucleotides up to millions of base pairs, depending on the 
criteria. At the small end they cover only a fraction of a gene or 
a small stretch of an intergenic element, whereas at the large end 
they span vast genomic tracts containing a multitude of genes. 
This chapter does not focus on the identification of homologous 
regions or synteny blocks in this section (but see Section 2.2.1),

1. Introduction1. Introduction

1.1. Background1.1. Background
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and for simplicity, refers to these units as “genes.” The reader is 
cautioned that this nomenclature connotes neither the size nor 
functional characterization of these genomic elements.

The problem of transforming one genome to another when 
the two genomes have the same gene content without paralogs 
can be reduced to that of sorting a signed permutation via a 
defined set of operations. The set of operations that are possible 
not only depends on, but can affect, the kind of genomes con-
sidered. For single chromosomes, a significant amount of effort 
has been given to the study of inversions (reversals) of segments 
of arbitrary length (2). When multiple linear chromosomes are 
involved, these can be generalized to include translocations, 
which exchange end-segments between two chromosomes, as 
well as fissions and fusions. The study of evolutionary “distance”
(minimum number of steps) between two genomes containing 
the same genetic material in different arrangements depends on 
the choice of elementary operations. It can be seen that with 
a menu of “generalized reversals” the distance cannot be less 
than b - c, where b = # breakpoints, and c = # cycles in the breakpoint 
graph (see Section 1.2.3). However, certain obstacles can prevent
the lower bound from being achieved.

Recently, attention has been given to a single universal opera-
tion, the double cut and join (DCJ), which acts indiscriminately 
on gene ends without regard to the chromosomal disposition of 
the genes (3, 4). Special cases of this operation are inversion, 
fission, fusion, translocation, and conversion between linear and 
circular chromosomes. When the basic operation is taken to be 
unrestricted DCJ, the lower bound, b – c, is always achieved and 
the finding of optimal paths is vastly simplified. One also obtains 
this minimal distance in the restricted case of linear chromosomes, 
with the caveat that once a circular intermediate is created (by 
one DCJ) it must be annihilated (by absorption or linearization) 
by the DCJ, which immediately follows. Section 1.5 shows that 
such a dual operation is equivalent to a single operation given a 
weight of 2 also known as “block interchange” or generalized 
transposition (3, 5, 6).

A genome consisting of N genes is completely described by speci-
fying the connections between adjacent gene ends. There are 2N
gene ends and (2N – 1)!! = 1 * 3 * 5 *…* (2N – 1) ways to pair 
them. Each such pairing corresponds to a genome configuration. 
This allows chromosomes consisting of a single gene eating its 
tail. It is possible to represent the configuration of a genome by 
a graph (Fig. 18.1) in which the two ends of a single gene are 
connected by a white line, and the connection between two adja-
cent gene ends is represented by a black line. Such a graph may 
be called a genome graph; it must not be confused with the edge 
graph to be described later, which pertains to two genomes. 

1.2. DCJ on Circular 
Chromosomes

1.2.1. Genome Graphs

1.2. DCJ on Circular 
Chromosomes

1.2.1. Genome Graphs
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We shall consistently speak of the path along a single gene as a 
“white line,” although in the literature it has been variously rep-
resented as a solid line, a dashed line, or a space.

The DCJ operation can be defined entirely as a modification 
of the black lines without any reference to the white lines. One 
chooses two black lines and cuts them. This leaves four loose 
ends that can be rejoined in three different ways, one of which 
re-establishes the previous configuration. One completes the 
DCJ by choosing either of the remaining two ways of rejoining 
the ends (Fig. 18.2).

1.2.2. DCJ Operation1.2.2. DCJ Operation
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Fig. 18.1. Genome graph for a genome consisting of one circular chromosome. 
(A) Signed labeling of each gene: a positive gene points counterclockwise around the 
circle. (B) Labeling of gene ends: the gene points from its tail (“t”) to its head (“h”).

Fig. 18.2. Localized view of DCJ [1]. The letters a, b, c, d represent gene ends. The black 
lines represent attachments between genes. The rest of the genome is not shown.
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Sorting circular chromosomes by DCJ is equivalent to sorting 
by reversals, fusions, and fissions. If the two black lines to be cut 
are initially on different chromosomes, either of the two possible 
DCJs will accomplish a fusion. The two possible outcomes differ 
by relative reversal of the two fragments. If the two black lines to 
be cut are initially on the same chromosome, one of the possible 
DCJs will accomplish a reversal within the chromosome, and the 
other a fission into two chromosomes (Fig. 18.3).

The operations of block interchange (3–6) and of block 
interchange with reversal can each be accomplished by a fission 
followed by a fusion, and therefore can be reduced to two DCJs 
(3) (Fig. 18.4). Transposition and transversion are special cases 
of block interchange, in which the two blocks to be exchanged 
are contiguous (7).

To distinguish these conventional operations from one 
another—for example, to distinguish reversal from fusion—
requires knowledge of the placement of the gene ends on the 
chromosome, which in turn requires knowledge of which gene 
ends lie at opposite ends of the same gene. In other words, it 
requires access to the white lines. By studying DCJ without mak-
ing these distinctions, one addresses a simpler mathematical prob-
lem in which the white lines play no part. Not only does this lead 

Fig. 18.3. DCJ on the genome shown in Fig. 18.1. Signed labeling of genes. The black lines cut are between 3h and 2t, 
above; and between 5t and 4t, below. The four gene ends 3h, 2t, 5t, 4t are labeled, respectively, a, b, c, and d to facilitate 
comparison with Fig. 18.2. In the upper outcome, the chromosome is split into two. In the lower outcome, the segment 
−3, −5 is reversed as can be seen by untwisting the chromosome so that the order of genes becomes 4, 1, −2, 5, 3. The 
reader may wish to follow the steps by relabeling the figure as in Fig. 18.1B.
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to a relatively simple distance formula, but also it may open the 
way to attack more complex rearrangement problems that would 
remain totally intractable in terms of the conventional operations 
that depend on the white lines.

The problem of sorting one genome (the initial genome) into 
another (the target genome) by DCJ operations is simply the 
problem of progressing by such operations from the initial pair-
ing of 2N gene ends to the target pairing. At any stage in this 
sequence of operations the intermediate configuration reached 
will be called the “current genome.” It is conventional to repre-
sent the connections between adjacent gene ends by black lines 
in the initial as well as in the current pairing, and by gray lines in 
the target pairing.

The comparison between initial or current genome and target 
genome can be visualized by means of a graph (Fig. 18.5C) con-
sisting of the 2N points joined by black and gray lines. The points 
represent gene ends; each point refers to that gene end in both 
genomes. The black lines tell how to connect the genes in the cur-
rent genome, and the gray in the target genome. If nothing else 
is added, the graph gives no information about which gene ends 
belong to the same gene or which points belong to the same chro-
mosome. It is often convenient, however, to supply this information 
by making the “white lines” (representing genes) visible or labeling 
the gene ends as in the genome graph. This graph, first introduced 
in (8), has been variously called edge graph, breakpoint graph, and 
comparison graph in the literature (but see Section 1.2.5).

1.2.3. Edge Graph1.2.3. Edge Graph

Fig. 18.4. Block interchange achieved by two successive DCJs. (A) Fission of one chromosome into two, taken from the 
upper outcome of Fig. 18.3. (B) The two chromosomes resulting from (A) are cut in a different way and fused into one 
circular chromosome. The result differs from the starting configuration of (A) by interchanging −3 and 4.
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It has been suggested recently (9) that there are advantages to 
replacing the edge graph by its dual. To construct the dual graph, 
replace every line of the edge graph by a point and every point 
by a line. The resulting graph is called the adjacency graph (4).
Perhaps the most striking advantage of the adjacency graph is 
the ease with which it can be constructed, given the two genome 
graphs (initial and target) to be compared.

Begin with the initial (or current) genome graph, drawn with 
only white lines. That is, the black lines have been contracted to 
points. We label each point by the gene ends that meet there. Thus, 
if the head of gene 7 is adjacent to the tail of gene 3 one would label 
the point of adjacency 7h3t (Fig. 18.6A). In like fashion we draw 
the genome graph of the target genome (see Fig. 18.6B). This is 
placed underneath the first genome graph so that both appear in 
the same picture. Thus each gene is represented twice, once above 
and once below. To complete the adjacency graph, we simply join 
the endpoints of each gene in the current genome at the corre-
sponding endpoints in the target genome below (see Fig. 18.6C). 
For ease of reference we shall refer to the joining lines as green 

1.2.4. Adjacency Graph1.2.4. Adjacency Graph

Fig. 18.5. Making an edge graph (only circular chromosomes). (A) Genome graph of the current genome, with gene 
ends labeled. This genome is identical with the upper outcome of Fig. 18.3, namely (4, 1, −2); (−3, −5), but dis-
played in such a way that all the black lines are horizontal except one in each chromosome. B. Genome graph of 
the target genome (1, 2); (3, 4, 5), similarly displayed. (C) The edge graph formed from (A) and (B). All of (A) is retained, 
and the labeled points are connected below by gray arcs in accordance with the connections shown in (B). Note that the 
large black-gray cycle visits both chromosomes of each genome.
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lines. Thus, each adjacency is the terminus of two green lines. The 
adjacency graph proper is obtained by dropping the white lines and 
retaining only the green (see Fig. 6D).

The power of the adjacency graph is seen when it is recog-
nized as the perfect dual (lines and points interchanged) of the 
edge graph described in the preceding section. Therefore, any-
thing that can be found from one can be found from the other. 

Fig. 18.6. Construction of an adjacency graph (only circular chromosomes). The current 
genome is (4, 1, −2); (−3, −5). The target genome is (1, 2); (3, 4, 5). (A) Current genome 
graph with black lines shrunk to points, white lines shown as dotted, and gene end 
labeling. (B) Target genome graph below (A). (C) Same as (A, B) with corresponding 
gene ends joined by green lines. (D) Same as (C) with white lines deleted.
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However, the adjacency graph has distinct advantages as visual 
display. First, it is considerably easier to construct by hand than 
the edge graph; the reader is encouraged to try both construc-
tions starting from the same genome pair (see Sections 3.3 and
3.4), and the correctness of the construction is much easier to 
verify for the adjacency graph. Second, in the edge graph the 
two genomes are represented tangled together and at least one 
of them is necessarily difficult to visualize from an examination 
of the graph. In the adjacency graph the two genomes are visu-
ally distinct and each one can be represented in a way that closely 
resembles the set of chromosomes.

The duality between the adjacency and edge graphs can be 
visualized with the aid of a more complex graph, called the mas-
ter graph (Fig. 18.7). The master graph contains all the black 
and gray lines of the edge graph as well as the green lines of the 
adjacency graph. Starting from the master graph, one obtains 
the edge graph by contracting the green lines to single points, 

Fig. 18.7. Duality via the master graph. The current genome is (3, 2, −4, 1). The target genome is (1, 2, 3, 4). At left 
is shown the usual edge graph, above; the same edge graph with points reordered to render the gray lines horizontal 
rather than the black lines, below; and the master graph, middle. At right is shown the adjacency graph. “Green lines” 
in the master and adjacency graph are those that connect the upper half with the lower. To go from the master to either 
version of the edge graph, contract the green lines. To go from the master to the adjacency graph, contract the black 
and gray lines.
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or correspondingly the adjacency graph by contracting the black 
and gray lines to single points.

To solve the problem of sorting circular chromosomes by DCJ, 
we observe that in the edge graph each point has two connec-
tions and therefore the graph resolves itself into closed cycles 
consisting of alternating black and gray lines. (When linear chro-
mosomes are allowed the situation is more complicated (see
Section 1.3)). If every DCJ is begun by cutting two black lines 
in the same cycle, the ends can be rejoined in a way that causes 
the cycle to be split in two (see Fig. 18.8). At the end of the sort-
ing, the current genome will be identical to the target genome, 
and the edge graph will consist of N cycles, each composed of 
one black and one gray line (Fig. 18.9), called 1-cycles. Since 
each DCJ increased the number of cycles by 1, the number of 
DCJ steps performed was N – C, where C is the number of cycles 
in the beginning edge graph.

From the preceding argument it is also clear that the number 
of cycles cannot be increased by more than one at a step, so that 
no sorting is possible in fewer than N – C steps (10). One thus 
arrives at the distance formula: d = N – C.

A frequent convention is to eliminate each 1-cycle as soon as 
it is formed by deleting the black line and the gray line of which 

1.2.5. Distance1.2.5. Distance

Fig. 18.8. DCJ acting on a cycle [1]. The cuts are shown as in Fig. 18.2, but the dashed arcs here represent the rest of the 
cycle, composed of black and gray lines, not the rest of the chromosome as is depicted in Fig. 18.3. This figure gives no 
indication of chromosomal structure. The upper outcome represents fission of a cycle, and the lower outcome reversal 
of part of a cycle, but there is no way to tell whether either outcome represents fission of a chromosome, fusion of two 
chromosomes, or reversal within a chromosome.
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it is comprised (Fig. 18.10). The lines of the edge graph with 
all 1-cycles deleted are called breakpoints. The number of either 
black or gray breakpoints is called b. We denote the number of 
cycles excluding the number of 1-cycles by c, as is usually done 
in this convention. Since the number of 1-cycles can be written 
either as N – b or C – c, the distance formula can be written as 
d = N – C = b – c. The proof presented in the preceding for the dis-
tance can be presented equally well with b – c.

This chapter generally allows 1-cycles to be retained in the 
edge graph and writes the distance as N – C. Strictly, the term 
“breakpoint graph” is not applicable to our edge graph, since in 
most literature the term “breakpoint” refers only to a connec-
tion between two gene ends that is present in one genome but is 
broken in the other.

The formula d = N – C can also be evaluated from the adja-
cency graph, since the green lines there form cycles that corre-
spond one for one to the black-gray cycles of the edge graph. 
A 1-cycle then consists of an A point and a B point joined by two 
green lines.

In the adjacency graph the DCJ is defined in terms of two 
of the points belonging to the current genome. These points are 
deleted, leaving four green lines lacking a termination. These 
four lines are paired in either of the two remaining ways and for 
each pair a new point is provided to serve as the common termi-
nus. (For linear chromosomes, see Section 1.4) This procedure 
is completely parallel to the one described in the preceding in 
terms of the edge graph, and one obtains the distance formula by 
essentially the same argument.

Fig. 18.9. (A) Sorting of an edge graph. At left, the edge graph of Fig. 18.5C with labels deleted. At right, the edge graph 
obtained by modifying the current genome until it matches the target genome. The gray arcs are the same as at left, but 
the black lines have been redrawn so as to mirror the gray arcs. All black lines are now shown as arcs above the points. 
(B) Cycle decomposition. The points of each graph in (A) have been shuffled so as to exhibit the cycles separately. There 
are two cycles in the graph at left, and five in the sorted graph at right; therefore the sorting requires a minimum of 
5 – 2 = 3 DCJ steps.
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This section allows both circular and linear chromosomes to be 
present in each genome. Now if we pair adjacent gene ends the 
two endpoints of each chromosome are not paired, so that there 
are only 2N – 2L points to be paired where L is the number of 
linear chromosomes. In this way we obtain a genome graph con-
sisting of N – L black lines and N white lines (see Fig. 18.11B). It 
would be possible to use this as a basis for constructing the edge 
graph between two genomes, but the resulting DCJ operation 
would not be capable of handling endpoints of a linear chro-
mosome. Thus, for example, the operation of reversing an end 
segment of a linear chromosome could not be subsumed under 
the DCJ operation. In order to include operations on endpoints 
including those of fission and fusion, it is convenient to consider 
each chromosomal endpoint in the current genome as the termi-
nus of a black line whose other end is not attached to any gene. 
This unattached end is called a “cap” (11). The resulting genome 
graph has N + L black and N white lines (see Fig. 18.11C).

The DCJ operation is now defined just as in Section 1.2.2. The 
capped black lines are treated completely on a par with those 
that connect two genes. When one of the black lines to be cut 
is capped, the half attached to the cap provides one of the four 
loose ends to be rejoined. The rejoining then connects the cap 

1.3. DCJ on Circular 
and Linear Chromo-
somes (Applications 
of Edge Graph)

1.3.1. Caps and Null 
Chromosomes

1.3. DCJ on Circular 
and Linear Chromo-
somes (Applications 
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Chromosomes

1.3.2. DCJ on Capped 
Lines
1.3.2. DCJ on Capped 
Lines

Fig. 18.10. Removal of a 1-cycle in an edge graph of circular chromosomes. (A) The edge graph of Fig. 18.5C, with 
labels removed. There are N = 5 genes (hence five black lines) and C = 2 cycles. (B) Same as (A) except that the 1-cycle 
has been removed. Now there are b = 4 black lines (breakpoints) and c = 1 cycle. The DCJ distance between the two 
genomes is 5 – 2 = 4 – 1 = 3.



396 Friedberg, Darling, and Yancopoulos

to one of the two gene ends originally connected by the other 
black line; this gene end now becomes a chromosomal endpoint 
in place of the original one (Fig. 18.12A).

When two capped black lines are cut, it is possible to rejoin the 
loose ends so that the two caps are connected and the two chromo-
somal endpoints are joined. This operation decreases L by 1, either 
by converting a linear to a circular chromosome or fusing two linear 
chromosomes into one. The structure consisting of two caps joined 
by a black line is an artifact of the construction called a null chromo-
some (see Fig. 18.12B). Null chromosomes do not contain genes 
and can be added or deleted without affecting the genome.

By including any number of null chromosomes in the initial 
genome, one may achieve the inverse of the above process. A null 
chromosome is destroyed by cutting the black line it contains and 
rejoining the ends to those of another black line that was internal 
to a chromosome. Thus L is increased by 1, either by fission of a 
linear chromosome or conversion of a circular chromosome to 
a linear chromosome.

As noted in Section 1.2.2, when only circular chromosomes are 
present (and by tacit agreement no null chromosomes), the con-
ventional operations mimicked by DCJ are reversals, fusions, and 
fissions. When linear chromosomes are allowed, we must add to 
this list translocations between linear chromosomes and conver-
sions from linear to circular or circular to linear chromosomes.

1.3.3. Menu of Operations1.3.3. Menu of Operations

Fig. 18.11. Genome graphs for circular and linear chromosome. (A) The circular chromo-
some (4, 1, −2) displayed as in the left hand part of Fig. 18.5A, but with signed labeling 
of genes. There are three genes and three black lines. (B) The linear chromosome [4, 1, 
−2] (we use [brackets] for linear, (parentheses) for circular chromosomes) displayed in 
the same way. The difference from (A) is the absence of the arc above. There are three 
genes and two black lines. (C) The same chromosome as in (B), displayed with caps. 
There are three genes and four black lines.
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A complete list of possible DCJ operations with their effect 
on genomic structure is presented in Table 18.1. The genomic 
effects are also summarized in Fig. 18.13.

This section considers the DCJ distance between an initial genome 
A and a target genome B, when linear chromosomes are permit-
ted. The edge graph may not consist entirely of cycles. Besides 
any cycles present there may be a number of paths, beginning at 
one cap and ending at another. In defining paths we regard the 
caps in genome A, which terminate black lines, as distinct from 
the caps in genome B, which terminate gray lines. A path will be 
called “odd” if it starts with a cap belonging to one genome and 
ends with a cap in the other. It will be called “even” if both its 
caps are in the same genome (Fig. 18.14). Odd paths may also 
be called AB paths; even paths may be called AA or BB paths, 
according to the location of the end caps.

The distance between two genomes can be found by closing all 
paths into cycles and applying the formula d = N ′ – C ′, where 
N ′ and C ′ are found from the closed graph. To close an AB path, 
identify the two end caps. To close an AA path, introduce a null 
chromosome into the B genome and identify its caps with those 
of the AA path. To close a BB path, introduce a null chromo-
some into the A genome and identify its caps with those of the 
BB path. After closure the graph will contain an equal number N ′

1.3.4. Paths and Cycles1.3.4. Paths and Cycles

1.3.5. Closure and 
Distance
1.3.5. Closure and 
Distance

Fig. 18.12. DCJ on a linear chromosome (same as Fig. 18.11C) with cutting of capped line(s). (A) One capped line and one 
uncapped line are cut. Outcomes are fission into a linear and a circular, and reversal of the 4, 1 segment. (B) Two capped 
lines are cut. Outcomes are conversion to circular chromosome (same as Fig. 18.11A) and reversal of the entire chromo-
some; the latter is no change. There is a null chromosome (black line bounded by two “x”-caps) in the upper outcome.

(B)

(A)

4 1 −2

−1 −4 −2

4 1 −2

4 1 −2

2 −1 −4

4 1 −2



Table 18.1
Outcomes of DCJ on linear and circular chromosomes

Lines cut

One or two 
chromo-
somes

Initial
chromosome
configuration

Two outcomes

Operation Result Operation Result

 1 int +int 1 C Fission C C Reversal C

 2 int +int 1 L (int) Fission C L (int) Reversal L

 3 int +int 2 C C Fusion C Fusion C

 4 int +int 2 C L (int) Fusion L (int) Fusion L

 5 int +int 2 L L (reciprocal) 
Translocation

L L (reciprocal) 
Transloca-
tion

L L

 6 int + tel 1 L (ext) Fission L C (ext) Reversal L

 7 int + tel 2 C L (ext) Fusion L (ext) Fusion L

 8 int + tel 2 L L (1-way) 
Translocation

L L (1-way) 
Transloca-
tion

L L

 9 tel + tel 1 L Conversion C N No change L

10 tel + tel 2 L L Fusion L N No change L L

11 int + null 2 C N Conversion L Same 
conversion

L

12 int + null 2 L N Fission L L Same fission L L

13 tel + null 2 L N No change L N No change L N

14 null + null 2 N N No change N N No change N N

A DCJ on a given edge graph is defined by choosing two black lines to be cut and selecting one of two 
ways to rejoin the cut ends. The black lines are of three kinds: internal to a chromosome; telomere at 
the end of a chromosome, with one cap; and null, with two caps. Accordingly there are six possible cases 
for two black lines. For each case there are various subcases according to the number and type (circular, 
linear, null) of chromosomes initially containing the cut lines. For each subcase there are two outcomes, 
depending on the rejoining.
 For each outcome we give the conventional name of the operation, and the subcase to which the final 
configuration belongs. For fission of L into CL, we distinguish between internal and external, depending 
on whether the ejected fragment was an interior segment or an end segment of the original chromosome. 
Likewise for fusion of CL to L, whether the circular material is inserted into the linear chromosome or 
appended to the end; and for reversal within L, whether an interior or an end portion is reversed. For trans-
location we distinguish between reciprocal (exchange of end portions) and 1-way (transfer of end portion 
from one to another).
 Operating on the last two subcases, tel + null and null + null, leads only to the initial configuration 
because all caps are indistinguishable. For the same reason, operating on tel + tel or int + null yields 
only one outcome different from the initial state. C = circular chromosome; chr = chromosome; int = 
internal line; L = linear chromosome; N = null chromosome; tel = telomere.
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of black lines and gray lines, and a number C ′ of cycles including 
those formed from paths.

If the adjacency graph is constructed in accordance with Section
1.2.4, each genome will in general contain not only adjacency 
points corresponding to the connections between adjacent genes 
in a chromosome, but also telomere points, which correspond 
to the endpoints of linear chromosomes. An adjacency has two 
labels and two green lines attached; a telomere has only one of 
each (see Fig. 18.15D). To perform a DCJ on two adjacencies, 
the four green lines incident on them are detached and reshuffled 
as described in Section 1.2.5.

To achieve the full menu of operations given in Section 3, it 
must be possible to perform DCJ also on telomeres. Then one 
has only three green lines to reshuffle, or only two if both points 
are telomeres; in the last case the result is a single adjacency point. 
Bergeron et al. (4) treat these possibilities as separate cases, along 
with another case in which a single adjacency is attacked, yielding 
two telomeres. Thus, the correct dualism is achieved between the 

1.4. DCJ on Circular 
and Linear Chromo-
somes (Applications 
of the Adjacency 
Graph)

1.4.1. Telomeres

1.4. DCJ on Circular 
and Linear Chromo-
somes (Applications 
of the Adjacency 
Graph)

1.4.1. Telomeres

Fig. 18.14. A complex edge graph. The current genome is [2, −3]; (1, 4); (5, −6). The target genome is [1, 2, 3]; [4]; (5); 
(6). There are two AB paths (odd), one BB path (even), and one cycle.

Fig. 18.13. The five possible “DCJ triangles” analogous to Fig. 18.3, sorted by number and 
type of chromosome participating. (Refer to Table 18.1 for A–D.) (A) Rows 1 and 3. (B)
Rows 2, 4, 6, and 7. (C) Rows 10 and 12. (D) Rows 9 and 11. E. Rows 5 and 8. In (C, D)
the third member of the triangle is not shown because it differs from the left hand member 
shown only by the exchange of two indistinguishable caps. C = circular; cv = conversion; 
fi = fission; fu = fusion; L = linear; N = null; tr = translocation, rv = reversal.
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edge and adjacency graph, but at the sacrifice of uniformity in the 
definition of DCJ.

We can make the DCJ uniform in the adjacency graph by adding 
structures dual to the caps and null chromosomes. The dual of a 
cap would be a dangling green line attached to a telomere point, 
like a road with a beginning and no end. Although this structure 
can lead to a correct uniform definition of DCJ, it would mar the 

1.4.2. Uniform Definition 
and 0 Labels
1.4.2. Uniform Definition 
and 0 Labels

Fig. 18.15. Construction of an adjacency graph involving circular and linear chromosomes. 
This figure was obtained from Fig. 18.6 by making one chromosome in each genome 
linear. Current genome is [4, 1, −2]; (−3, −5). The target genome is (1, 2); [3, 4, 5]. (A) The 
current genome above. (B) The target genome below. (C) Same as (A, B) with green lines 
added. (D) Same as (C) with white lines deleted. (E) Same as (D) with “0” labels added to 
telomeres. The two cycles in Fig. 18.6 are replaced here by even paths.
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visual elegance of the adjacency graph. Therefore, we suggest the 
logically equivalent addition of a second label, “0,” to each tel-
omere, representing the absence of a green line (see Fig. 18.15E). 
The “0” labels play the role of caps. We also introduce null points, 
to play the role of null chromosomes. A null point belongs to one 
genome and has two “0” labels and no green line attached. Every 
point now has two labels. For further illustration we present in 
Fig. 18.16 the adjacency graph corresponding to Fig. 18.14. The 
corresponding master graph is shown in Fig. 18.17.

The DCJ can now be performed by choosing any two points in 
the current genome, reshuffling the four labels attached to them, and 
reconnecting the green lines (however many there are) in accordance 
with the new labeling of the points. This is a uniform definition, and 
it yields all the special cases described in Table 18.1.

Like the edge graph, the adjacency graph consists of paths and 
cycles. The paths begin and end on telomeres. An AB path (odd) 
begins in genome A and ends in genome B. An AA path (even) 
begins and ends in genome A. A BB path (even) begins and ends 
in genome B.

1.4.3. Paths and Cycles, 
Odd and Even Paths
1.4.3. Paths and Cycles, 
Odd and Even Paths

Fig. 18.16. The adjacency graph corresponding to Fig. 18.14. Current genome [2, −3]; (1, 4); (5, −6). Target genome 
[1, 2, 3]; [4]; (5); (6). “0” labels have been added.

Fig. 18.17. The master graph for Figs. 18.14 and 18.16. Contract green lines to get Fig. 18.14. Contract black and gray 
lines to get Fig. 18.16.
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It is possible to close the adjacency graph and use the dis-
tance formula d = N ′ – C ′ given in Section 1.3.5. To close an AB 
path, join the two endpoints (telomeres) by a green line. To close 
an AA path, introduce a null point into genome B and connect it 
by green lines to both ends of the AA path. To close a BB path, 
introduce a null point into genome A and connect it by green 
lines to both ends of the BB path. Then C ′ is the number of 
cycles including those formed from paths, and N ′ is the number 
of points in each genome, including null points.

Bergeron et al. (4) have also given a distance formula that can 
be applied directly to the adjacency graph without introducing 
“0” labels, null points, or closure. They arrive at d = N – C – I/2,
where N is the number of genes, C the number of cycles, and 
I the number of odd paths. This is a lower bound on the dis-
tance because no DCJ can do better than increase C by 1 or 
increase I by 2, but not both. To see that this lower bound can 
be achieved, see Section 3.10, where we give a sorting proce-
dure that achieves it.

This formula can be proved equivalent to the one based on 
closure as follows. One has C′ = C + P, where P is the number 
of paths. One also has 2N ′ = 2N + LA + LB + ZA + ZB, where LA, LB
are the number of linear chromosomes in each genome and ZA,
ZB are the number of null points introduced in each genome 
for closure. By counting telomeres one has P = LA + LB and 

1.4.4. Distance Formula1.4.4. Distance Formula

Table 18.2
Pairwise DCJ distances between genomes of Shigella
and E. coli as computed on the Mauve alignment with 
minimum LCB weight 1147

Sb227 Sd197 5 str. 8401 2a 2457T K12

S. boydii Sb227 —

S. dysenteriae Sd197 86 —

S. flexneri 5 str. 8401 40 79 —

S. flexneri 2a 2457T 44 79 14 —

E. coli K12 28 65 16 18 —

We see that in general, pairwise distances between Shigella spp. and E. coli K12 
are lower than distances among pairs of Shigella genomes—a counterintuitive 
result for organisms from different genera. Shigella and E. coli were originally 
given different genus names because the diarrheal disease caused by Shigella
had different symptoms than that caused by E. coli. Shigella and E. coli are 
now commonly considered members of the same bacterial “species.” Some 
strains of Shigella appear to have acquired an elevated rate of genomic rear-
rangement, resulting in the high DCJ distances between strains.
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also P = I + ZB + ZA, since closure introduces one null point for 
each even path. Putting these equations together, one obtains 
N′ – C′ = N – C – I/2. The formula d = N – C – I/2 can also be 
applied to the edge graph since N, C, and I are the same in 
both graphs.

Of biological interest is the case in which only linear chromo-
somes are allowed in the initial and target genomes, and never 
more than one circular chromosome in the current genome. 
It has been shown (3) that in this case the DCJ distance is the 
same as though circular chromosomes were unrestricted. This 
case is equivalent to forbidding circulars altogether and allow-
ing inversions, translocations, and block interchanges (with 
weight 2).

The interested reader may follow the procedures detailed in 
Section 3 to construct the graphs that have been described or 
develop algorithms for the distance or sorting by DCJ:
 Section 3.1. Construction of black-white genome graph
 Section 3.2. Construction of white genome graph
 Section 3.3. Construction of edge graph
 Section 3.4. Construction of adjacency graph
 Section 3.5. From edge graph to adjacency graph
 Section 3.6. From adjacency graph to edge graph
 Section 3.7. Distance without linear chromosomes
 Section 3.8. Distance with or without linear chromosomes
 Section 3.9. Sorting without linear chromosomes
Section 3.10. Sorting with or without linear chromosomes

The procedures in this chapter are of two kinds: constructing 
graphs (described in Section 1), and carrying out sorting algo-
rithms to transform one genome into another by the minimum 
number of DCJs.

The constructions can be done in two ways: by hand or compu-
ter. Hand construction is easier unless one has facility with com-
puter software for creating diagrams. Some of the constructions 
involve alterations of a graph, and this requires an excellent eraser 
or else the willingness to draw the graph from scratch after each 
alteration.

1.5. Linear Chromo-
somes with Restric-
tion of Circular 
Intermediates

1.5. Linear Chromo-
somes with Restric-
tion of Circular 
Intermediates

1.6. Outline of 
Procedures
(see Section 3)

1.6. Outline of 
Procedures
(see Section 3)

2. Materials and 
Online Resources
2. Materials and 
Online Resources

2.1. Constructing 
Graphs by Hand 
or Computer

2.1. Constructing 
Graphs by Hand 
or Computer
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The DCJ algorithm provides a measure of genomic rearrange-
ment distance between genomes that have been coded as syn-
teny blocks. Identification of synteny blocks among genomes 
remains a non-trivial task and is the subject of ongoing 
research and software development. As discussed in Chapter 
20, GRIMM-Synteny provides one mechanism for identify-
ing synteny blocks. This section describes the Mauve genome 
alignment software (12), which can be used to both identify 
synteny blocks and compute pairwise DCJ distances among 
multiple genomes. Mauve is free, open-source software for 
Linux, Windows, and Mac OS X, available from http://gel.
ahabs.wisc.edu/mauve.

Mauve creates synteny blocks using an algorithm that iden-
tifies homologous tracts of sequence that are unique in each 
genome. First, Mauve identifies putatively homologous local 
multiple alignments (13). Next, the local multiple alignments 
are clustered into groups that are free from rearrangement, 
called locally collinear blocks (LCBs). Each LCB is assigned an 
LCB weight equal to the sum of lengths of the ungapped local 
alignments that comprise the LCB. Some LCBs may represent 
spurious homology predictions or paralogous sequence, and it 
is necessary to filter out such LCBs. Such LCBs typically have 
low LCB weight relative to LCBs representing non-paralogous 
homology. Mauve discards all LCBs that have an LCB weight less 
than a user-specified threshold value in a process called greedy 
breakpoint elimination. For more details, refer to the algorithm 
descriptions in (12, 14).

Using the Mauve genome alignment software, one can generate 
synteny blocks and perform a DCJ analysis in a five-step process:
 1. Download and run Mauve from http://gel.ahabs.wisc.edu/

mauve.
 2. Download whole genome sequence data in either Multi-

FastA or GenBank format from NCBI. For this example we 
will use the genomes of five Shigella and E. coli strains. The 
genomes are available from:
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Shigella_boydii_
Sb227/NC_007613.gbk
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Shigella_
flexneri_2a_2457T/NC_004741.gbk
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Shigella_
flexneri_5_8401/NC_008258.gbk
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Shigella_
dysenteriae/NC_007606.gbk
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_
coli_K12/NC_000913.gbk

2.2. Online Software 
for Performing 
Algorithms

2.2.1. Applying DCJ to 
Genome Sequence Data 
Using Mauve

2.2. Online Software 
for Performing 
Algorithms

2.2.1. Applying DCJ to 
Genome Sequence Data 
Using Mauve

2.2.2. Performing a DCJ 
Analysis of E. coli and 
Shigella Genomes with 
Mauve 1.3.0

2.2.2. Performing a DCJ 
Analysis of E. coli and 
Shigella Genomes with 
Mauve 1.3.0



 Genome Rearrangement 405

 3. Identify synteny blocks (LCBs) in Mauve.
a. Select the “Align …” option from the “File” menu. 

The “Align sequences…” dialog will appear, as shown 
in Fig. 18.18.

b. In the dialog, add each genome sequence file that was 
downloaded from NCBI. Files can be dragged and 
dropped, or selected using the “Add sequence…” but-
ton, as shown in Fig. 18.18A. Also set the output file 
location. In this example, output will be written to the 
file C:\shigella\5way_comparison.

c. Select the “Parameters” tab (see Fig. 18.18B) and dis-
able the “Extend LCBs” option. Then disable the “Full 
Alignment” option. The synteny block generation proc-
ess will run much more quickly without performing a full 
genome alignment.

d. Click the “Align” button.
 4. Choose the appropriate minimum LCB weight. A slider con-

trol at the top-right of the Mauve window allows one to 
change the minimum LCB weight, as shown in Fig. 18.19.
The default value is often too low and thus many spurious 
LCBs appear. By sliding the control to the right, a higher 
LCB weight can be chosen that better represents the true 
set of LCBs. For the present data we select a minimum LCB 
weight of 1147, which roughly corresponds to the average 
gene size in bacteria.

Fig. 18.18. The Mauve “Align sequences…” dialog window. (A) The selection of five GenBank sequence files that cor-
respond to four genomes of Shigella spp. and one E. coli (NC_000913.gbk). (B) Selection of the alignment options. Note 
that the “Extend LCBs” option and the “Full Alignment” option have been unchecked. Once the appropriate sequence files and 
options have been selected, an alignment can be triggered by clicking the “Align…” button at bottom right. The series of 
DCJ operations used can be viewed by clicking the “Operations” button in the DCJ window.
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 5. Perform a DCJ analysis by clicking the DCJ button in the 
Mauve window (shown at top in Fig. 18.19). The results 
appear as a textual table in a pop-up window. The table is tab-
delimited text that can be copied-and-pasted into a program 
such as Microsoft Excel. The pairwise DCJ distances for the 
five Shigella and E. coli genomes are shown in Table 18.2.

Construct a black-white genome graph with a given gene con-
tent. Let the gene content be given in signed permutation form, 
thus [4, 1, −2] (−3, −5) signifies that there are two chromo-
somes, that the first chromosome is linear and reads from left to 
right as gene 4 pointing forward, gene 1 pointing forward, gene 
2 pointing backward, and that the second chromosome is circular 

3. Methods3. Methods

3.1. Construction 
of a Black-White 
Genome Graph

3.1. Construction 
of a Black-White 
Genome Graph

Fig. 18.19. Mauve alignment of four Shigella genomes with one E. coli genome. Genomes are laid out horizontally and 
linked colored blocks indicate the homologous segments in each genome. Blocks shifted downward in a given genome 
are inverted relative to Shigella boydii Sb227 (top). The minimum LCB weight has been adjusted using the LCB weight 
slider (top right) to a value of 1147. The increase in minimum LCB weight removes spurious LCBs. A minimum weight 
value of 1,147 roughly coincides with the average length of prokaryotic genes, indicating that remaining LCBs (Synteny 
Blocks) are likely to consist of one or more complete genes. The Mauve software permits interactive browsing of Synteny 
Blocks in conjunction with annotated features such as genes. For further information on how to use Mauve, please refer 
to the online Mauve user guide at http://gel.ahabs.wisc.edu/mauve.
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and reads counterclockwise as gene 3 pointing backward, gene 5 
pointing backward.
 1. For each circular chromosome of n genes, place 2n points in 

a horizontal line.
 2. Join these 2n points by alternating white and black lines, 

starting with white. (The white lines may be left invisible.)
 3. Join the first and last point by a black arc passing above.
 4. For each linear chromosome of n genes, place 2n + 2 points 

in a horizontal line. (The first and last point may be distin-
guished as caps.)

 5. Join these 2n + 2 points by alternating black and white lines, 
starting with black.

 6. As a result of Steps 2 and 5, every chromosome now has 
as many white lines as genes. The white lines represent the 
genes, reading from left to right as in the input description. 
They may be labeled as follows.

 7. If the gene is positive (pointing forward), label the right hand 
end of the white line with the gene number followed by “h,” 
and the left hand end with the gene number followed by “t.” If 
it is negative (pointing backward), label the left hand end with 
the gene number followed by “h,” and the right hand end 
with the gene number followed by “t.” Caps are not labeled.

With the input example given above, the first chromosome is 
given 2 × 3 + 2 = 8 points, the second is given 2 × 2 = 4 points, and 
the labels of the 12 points from left to right (caps indicated by x) 
are x, 4t, 4h, 1t, 1h, 2h, 2t, x, 3h, 3t, 5h, 5t.

Construct a white genome graph with a given gene content. Let 
the input be given as in Section 3.1.
 1. For each circular chromosome of n genes, place n points in a 

horizontal line.
 2. Join these n points by n – 1 white lines, and join the first and 

last point by a white arc passing above. (This white arc must 
be visible, at least until its endpoints have been labeled in 
Step 6 below.)

 3. For each linear chromosome of n genes, place n + 1 points in 
a horizontal line.

 4. Join these n + 1 points by n white lines.
 5. Each chromosome of n genes now has n white lines. Each 

white line will be labeled at each of its endpoints, so that 
the point of connection between two consecutive white lines 
will receive two labels. Label in accordance with the input 
description as follows.

 6. For the white arc passing above a circular chromosome, label 
“in reverse.” If the gene is positive, the left hand end receives 

3.2. Construction of a 
White Genome Graph
3.2. Construction of a 
White Genome Graph
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the gene number followed by “h,” and the right hand end 
receives the gene number followed by “t.” If the gene is neg-
ative, the right hand end receives the gene number followed 
by “h,” and the left hand end receives the gene number fol-
lowed by “t.”

 7. For all other white lines, label “directly.” If the gene is posi-
tive, the right hand end receives the gene number followed 
by “h,” and the left hand end receives the gene number 
followed by “t.” If the gene is negative, the left hand end 
receives the gene number followed by “h,” and the right 
hand end receives the gene number followed by “t.”

 8. All points now have two labels, except the endpoints of lin-
ear chromosomes.

With the input example given in Section 3.1, the first chromo-
some will have 3 + 1 = 4 points, and the second will have two 
points. The labels of the six points will be (4t); (4h,1t); (1h,2h); 
(2t); (5t,3h); (3t,5h) (see Fig. 18.15A).

Construct an edge graph, given the initial and target genomes. 
Let the two genomes be given in signed permutation form, for 
example:
genome A (initial) = [4, 1, −2) (−3, −5)
genome B (target) = [1, 2) (3, 4, 5)
 1. Construct the black-white genome graph of genome A, fol-

lowing Section 3.1.
 2. Construct the black-white genome graph of genome B, but 

use gray lines instead of black.
 3. For each gray line in the B graph, connecting two labeled 

points, find the corresponding labeled points in the A graph 
and connect them by a gray arc passing beneath the horizon-
tal line.

 4. For each gray line in the B graph connecting a labeled point 
to a cap, find the corresponding labeled point in the A graph 
and run a gray line vertically downward to a cap below.

 5. Discard the B graph.
 6. The white lines may now be deleted if desired.
The resulting elaborated A graph is the edge graph between 
genomes A and B. It should have 2N labeled points, 2LA caps 
terminating horizontal black lines, and 2LB caps terminating ver-
tical gray lines, where N is the number of genes in each genome, 
LA is the number of linear chromosomes in genome A, and LB is 
the number of linear chromosomes in genome B.

Thus, for the input example given above, the edge graph 
has 10 labeled points, 2 × 1 = 2 caps terminating horizontal black 
lines, and 2 × 1 = 2 caps terminating vertical gray lines.

3.3. Construction 
of an Edge Graph
3.3. Construction 
of an Edge Graph
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Construct an adjacency graph, given the initial and target genomes. 
Let the input genomes be given as for Procedure 3.
 1. Construct the white genome graph for genome A, using 

Section 3.2. (see Fig. 18.15A).
 2. Construct the white genome graph for genome B, directly 

below the A graph (see Fig. 18.15B).
 3. Join each label in the A graph to the corresponding label in 

the B graph by a green line (see Fig. 18.15C).
 4. Delete white lines (see Fig. 18.15D).
 5. If desired, add a “0” label to each telomere (point with only 

one label) (see Fig. 18.15E).
The resulting adjacency graph will have 2N green lines, where 
N is the number of genes in each genome. For the input given 
before Section 3.3, there should be 2 × 5 = 10 green lines.

Given an edge graph, construct the corresponding adjacency graph. 
We shall assume that the white lines are invisible in both graphs.
 1. The edge graph is built on a horizontal level called the upper level. 

Also visualize a lower level, some distance below the upper level.
 2. For each gray arc in the edge graph, mark a point on the 

lower level. Join this point by two green lines to each end-
point of the gray arc. Delete the gray arc.

 3. Replace each vertical gray line running from a point on the 
upper level down to a cap by a vertical green line running 
from that point on the upper level down to a point on the 
lower level. Delete the cap.

 4. Label each point on the lower level by the same labels as 
appear at the upper ends of the green lines connected to it. 
If there is only one green line, add a label “0” if desired.

 5. On the upper level, contract each horizontal black line to a 
point. Let this point inherit the labels of the previous end-
points of the black line. If one endpoint was a cap, add a 
label “0” if desired, otherwise give the point only one label.

 6. Treat the black arcs according to the same principle. This may 
be done by deleting the arc and its right hand endpoint, and 
transferring the green line and label of the deleted endpoint to 
the left hand endpoint, which is now the point of contraction.

The resulting structure is the adjacency graph. Every point should 
have two labels, if “0” labels were added.

Given an adjacency graph, construct the corresponding edge graph.
 1. If the adjacency graph has “0” labels, delete them.
 2. Label each green line in the adjacency graph with the single 

label that is found on both of its endpoints. If the two endpoints
have both labels in common, there will be two green lines 

3.4. Construction of 
Adjacency Graph
3.4. Construction of 
Adjacency Graph

3.5. From Edge 
Graph to Adjacency 
Graph

3.5. From Edge 
Graph to Adjacency 
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3.6. From Adjacency 
Graph to Edge Graph
3.6. From Adjacency 
Graph to Edge Graph
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joining them; one green line should receive one label and 
one the other.

 3. Draw out each point on the upper level (in genome A) into 
two points connected by a horizontal black line. Give each 
point one of the green lines connected to the original point, 
with the corresponding label. If the original point has only 
one green line, let one of the new points inherit the green 
line with its label, and let the other be a cap.

 4. Replace each pair of green lines having a common lower end-
point by a gray arc connecting the respective upper endpoints.

 5. Replace each green line having only one lower endpoint by 
a vertical gray line running from the upper endpoint down-
ward to a cap. The resulting structure is the edge graph.

Find the DCJ distance between two genomes, given the adja-
cency graph. Restricted case: no linear chromosomes in either 
genome (no telomeres in the graph).
 1. N is the number of genes in each genome, found by count-

ing the points on either level.
 2. C is the number of cycles in the graph, found by the follow-

ing steps.
 3. Start from any point and follow the green lines continuously, 

marking each point you reach, until you return to the start-
ing point. You have traversed a cycle.

 4. Start again from an unmarked point (if there is one) and 
traverse a second cycle by repeating Step 3.

 5. Repeat until all points are marked. The number of cycles 
traversed is C.

 6. The distance is N – C.

Find the DCJ distance between two genomes, given the adjacency 
graph. In a general case, linear chromosomes may be present.
 1. If the number N of genes in each genome is not known, 

determine it by counting the green lines and dividing by 2.
 2. Explore all the paths by the following steps.
 3. Start at a telomere; it has only one green line attached. Move along 

the green lines continuously, marking each point you reach, until 
you reach another telomere. You have traversed a path.

 4. If you began on one level and ended on the other, the path 
is odd. Keep count of the odd paths.

 5. If there remains an unmarked telomere, start again at that 
point and traverse a second path. Repeat until all paths are 
traversed (no unmarked telomere).

3.7. Distance Without 
Linear Chromosomes
3.7. Distance Without 
Linear Chromosomes

3.8. Distance With 
or Without Linear 
Chromosomes

3.8. Distance With 
or Without Linear 
Chromosomes
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 6. I is the number of odd paths you have found. This number 
must be even.

 7. The part of the graph remaining unmarked consists com-
pletely of cycles. Find C, the number of cycles, by applying 
Steps 3 to 5 of Section 3.7.

 8. The distance is N – C – (I/2).

Perform a series of DCJs to transform a given initial genome 
consisting of circular chromosomes into a given target genome 
consisting of circular chromosomes.
 1. Construct the adjacency graph between initial and target 

genome (Section 3.4). All points will be adjacencies (two 
green lines).

 2. Proceed from left to right on the lower level. Choose the 
first point that is connected by green lines to two different 
points on the upper level. If there is none, sorting has been 
completed.

 3. Cut the two points on the upper level that are connected to 
the chosen point.

 4. Reconnect the four loose ends so that the two green lines 
from the chosen point are connected to one point on the 
upper level, and the other two green lines to the other point.

 5. Repeat steps 2–4 until sorting is complete.
Each DCJ has increased the number of cycles by one. The final 
configuration consists completely of 1-cycles.

Perform a series of DCJs that transform a given initial genome of 
arbitrary type (circular and linear chromosomes both permitted) 
to a given target genome of arbitrary type.
 1. Construct the adjacency graph between the initial and tar-

get genome (Section 3.4). Include “0” labels for telomere 
points (only one green line).

 2. Proceed from left to right on the lower level. Choose the first 
point that is connected by green lines to two different points 
on the upper level. If there is none, proceed to Step 7.

 3. Cut the two points on the upper level that are connected to 
the chosen point.

 4. Shuffle the four labels on the two cut points so that the two 
labels corresponding to those on the chosen point are placed 
on one point on the upper level. Place the other two labels 
on the other point. If the latter are both “0,” the resulting 
null point may be deleted.

 5. Reconnect all loose ends of green lines according to the 
labels on the points.

3.9. Sorting Without 
Linear Chromosomes
3.9. Sorting Without 
Linear Chromosomes

3.10. Sorting With 
or Without Linear 
Chromosomes

3.10. Sorting With 
or Without Linear 
Chromosomes
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 6. Repeat Steps 2–5 until every point on the lower level is joined 
to no more than one point on the upper level. Every DCJ 
so far has increased the number of cycles by 1, and has not 
changed the number of odd paths, although it may have 
shortened some. The graph now consists of: (1) 1-cycles; (2) 
AB paths (odd) of length 1; (3) BB paths (even) of length 2.

 7. Proceed from left to right on the upper level. Choose the 
first point that is connected by green lines to two different 
points on the lower level. (This configuration will be a BB 
path.) If there is none, sorting is complete.

 8. Cut the chosen point and a null point introduced for this 
purpose on the upper level.

 9. Shuffle the four labels so that the two “0” labels are on dif-
ferent points.

10. Reconnect the two loose ends of green lines. This has con-
verted an adjacency (the chosen point) and a null point into 
two telomeres. The BB path has been split into two AB 
paths.

11. Repeat Steps 7–10 until sorting is complete. Each DCJ in 
this second loop has left the number of cycles unchanged and 
has increased the number of odd (AB) paths by 2. Each DCJ 
in the whole procedure has increased the number C + I/2
by 1, where C = number of cycles, I = number of odd paths. 
The final configuration consists of 1-cycles and AB paths of 
length 1. The labeled points on the upper level correspond 
exactly to those on the lower level.

An example of this procedure is shown in Figs. 18.16 and 18.20.

 1. 1.: Homology is a binary characteristic. There is no such thing 
as 75% homologous, “more” homologous or “homologous 
depending on criteria”. Given sequence data, we use com-
putational methods to determine whether a given genomic 
segment is homologous to another genomic segment. These 
computational methods use parameters and “criteria” to 
make predictions about homology. The true relationship of 
homology does not depend on those criteria, but our predic-
tions do.

 2. 3, 3.1, 3.2: In all these constructions we represent the genome 
graph as far as possible as laid out in a straight horizontal row. 
This can be done completely for linear chromosomes, but a 
circular chromosome must contain one arc that returns from 
the last point to the first. In 3.1. we have the option to choose 

4. Notes4. Notes
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either a black or a white line to be this arc. We choose a black 
arc because a white arc, if invisible, would be difficult to infer 
from the appearance of the graph, and so circular chromosomes 
would not be easily distinguished from linear. (In principle the 
distinction could be made by studying the labels.)

Fig. 18.20. Sorting of Fig. 18.16 by DCJ. Procedure as given in Section 3.10. (A) Start in Fig. 18.16 from 1h2t below, cut 
02t, and 1h4t above. Operation is fusion of circular and linear. New genome is [4, 1, 2, −3]; (5, −6). ∆C = 1, ∆I = 0. 
(B) Start in (A) with 2h3t below, cut 2h3h and 3t0 above. Operation is reversal. New genome is [4, 1, 2, 3]; (5, −6). 
∆C = 1, ∆I = 0. (C) Start in (B) from 5h5t below, cut 6h5t and 5h6t above. Operation is fission of circular. New genome 
is [4, 1, 2, 3]; (5); (6). ∆C = 1, ∆I = 0. (D) Start in (C) from 4h1t above, cut 4h1t, and 00 (null point has been introduced 
for this purpose). Operation is fission of linear to two linears. New genome is [1, 2, 3]; [4]; (5); (6), identical to target 
genome. ∆C = 0, ∆I = 2.
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  In 3.2 we have no choice but to use a white arc. Therefore, 
the arc must not be deleted until its endpoints have been 
labeled.

 3. 3.1: Caps seem to be necessary at least in the current 
genome if one wants a uniform definition of DCJ in terms 
of the edge graph. We have thought of making the linear 
chromosome “pseudocircular” by adding a black line to con-
nect the endpoints, but marking this line to show that it 
is not really there. However, a DCJ made by cutting this 
line would have ambiguous effect, because it would remain 
unspecified which end of the chromosome was to receive 
new material. Another possibility (11) is to omit the caps in 
the target genome; we have preferred to use them in both 
genomes for the sake of symmetry between the two.

 4. 3.2: The rules for labeling can be understood by imagin-
ing a toy train proceeding counterclockwise along a closed 
track, left to right in the foreground and right to left on the 
return segment in the background. Some of the cars (posi-
tive genes) have been put on correctly, heads forward and 
tails behind; some (negative genes) have been put on back-
wards. In the foreground the positive cars have their heads 
to the right and tails to the left, and the negative (backwards) 
cars have heads left and tails right. In the background the 
train is headed right to left; therefore, the positive cars have 
heads left and the negative cars have heads right. The white 
arc corresponds to the background portion of the track.

 5. 3.4, 5; 3.5, 4 and 5; 3.6, 1; 3.10: The adjacency graph was 
presented by Bergeron et al. (3) without “0” labels, and for 
some purposes they are superfluous. Therefore, they are 
made optional in Sections 3.4 and 3.5. They only get in 
the way in Section 3.6, and so we delete them at the outset. 
They have no effect on the computation of distance, and so 
are not mentioned in Section 3.8. Their value is in sorting 
by DCJ, which becomes simpler if the operation is defined 
with only one universal case. Therefore we explicitly include 
them in Section 3.10.

 6. 3.5: Steps 2 and 3 are ambiguous as to the placement of points 
on the lower level, and may therefore lead to an appearance 
of the adjacency graph different from that resulting from 
Section 3.2, but the connections will be the same.

 7. 3.8: The number of genes can of course be determined by 
counting the white lines, but if they are not visible the easiest 
way may be by counting the green lines. Counting the points 
requires a distinction between adjacencies and telomeres.

 8. 3.8: The number of AB paths, I, is always an even number; 
therefore, the distance formula N – C – I/2 always gives an 
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integer. I is even because the number of A-caps is equal to 
I plus twice the number of AA paths. Therefore, if I were odd, 
the number of A-caps would be odd, which is impossible 
because this number is double the number of linear chromo-
somes in genome A.

 9. 3.11: In sorting with linear chromosomes present, the ele-
ments to be expected when sorting is complete are 1-cycles 
and AB paths of length 1. Each of these structures involves 
one point in each genome, with identical labeling. A 1-cycle 
represents an adjacency common to both genomes. An AB 
path of length 1 represents a chromosomal endpoint com-
mon to both genomes.

The authors are grateful to David Sankoff for his advice and 
encouragement; Anne Bergeron for communicating the idea of 
the adjacency graph in advance of publication; Mike Tsai for his 
online implementation of the DCJ; and Betty Harris for invalu-
able logistic support and encouragement. S.Y. thanks Nicholas 
Chiorazzi for his enthusiasm, encouragement, and support; and 
A.E.D is supported by NSF grant DBI-0630765.
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Chapter 19

Inferring Ancestral Protein Interaction Networks

José M. Peregrín-Alvarez

Abstract

With the recent sequencing of numerous complete genomes and the advent of high throughput tech-
nologies (e.g., yeast two-hybrid assays or tandem-affinity purification experiments), it is now possible to 
estimate the ancestral form of protein interaction networks. This chapter combines protein interaction 
data and comparative genomics techniques in an attempt to reconstruct a network of core proteins and 
interactions in yeast that potentially represents an ancestral state of the budding yeast protein interaction 
network.

Key words: Ancestral state, protein interaction networks, phylogenetic profiles, comparative genomics, 
bioinformatics.

With the advent of genomics, the focus of biology has changed 
from the individual functions of biomolecular components to the 
interactions between these components. Protein–protein interac-
tions underlie many of the biological processes in living cells. In 
recent years, high throughput analyses have enabled us to obtain 
protein interaction data from a few model organisms (1–5). One 
of the key findings of such analyses is that these biological net-
works share many global topological properties such as scale-free 
behavior. The analysis of the topological properties of the interac-
tions between essential proteins in the budding yeast interactome 
has also revealed a preferential attachment between these proteins, 
resulting in an almost fully connected sub-network (6). This sub-
network includes proteins with a wide phylogenetic extent, suggesting 
that they may be of an earlier evolutionary origin (5, 7–9). In fact, 

1. Introduction1. Introduction

Jonathan M. Keith (ed.), Bioinformatics, Volume I: Data, Sequence Analysis, and Evolution, vol. 452
© 2008 Humana Press, a part of Springer Science + Business Media, Totowa, NJ
Book doi: 10.1007/978-1-60327-159-2 Springerprotocols.com
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the sub-network includes proteins involved in processes believed 
to have appeared early in evolution (e.g., transcription, translation, 
and replication) (8–10). Thus, this sub-network of proteins with 
wide phylogenetic extent may represent an ancestral state of the 
yeast protein interaction network. In addition, this sub-network 
may represent a “core” common to other species, probably rep-
resenting an ancestral form of the protein interaction network in 
Eukarya, around which other species- or taxa-specific interactions 
may merge (6).

This chapter combines comparative genomics techniques 
and protein interaction data to infer the ancestral state of pro-
tein interaction networks (see Note 1). To illustrate the use of 
this approach we will use published yeast protein interaction data 
(11) aiming to reconstruct a potential ancestral form of the yeast 
protein interaction network. Figure 19.1 shows a conceptual 
view of the proposed method. The approach presented here may 
help us to understand the overall structure and evolution of 
biological networks.

Fig. 19.1. Inferring potential ancestral protein interaction networks. This figure represents a conceptual view of the 
method presented here. In summary, the Saccharomyces cerevisiae genome is blasted against 182 other complete 
genomes, and the results are stored in a PostgreSQL database. The database is queried, phylogenetic profiles of proteins 
(14) and interactions (5) are produced, and the number of genomes in which yeast homologs are found is counted. These 
data are used as input to visualize the conservation of the interaction network using a network visualization tool. Finally, 
highly conserved (>100 genomes) nodes (proteins) and edges (protein interactions) are selected from the network. 
The resulting highly conserved sub-network may represent an ancestral state of the original yeast protein interaction 
network (5–7).
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Our approach assumes that the user has some basic computing/
programming skills, such as using Unix/Linux command lines, 
writing Perl scripts, and building PostgreSQL (or MySQL) data-
bases. Furthermore, it assumes a basic knowledge of bioinformat-
ics tools, such as BLAST.

 1. The minimal computational infrastructure required is one 
Intel workstation with sufficient speed and disk space (see
Note 2).

1. Linux (http://www.linux.org/), Perl (http://www.perl.org/), 
and PostgreSQL (http://www.postgresql.org/) installations.

 1. BLAST (ftp://ftp.ncbi.nih.gov/blast/) (12) and BioLay-
out Java v1.21 (http://cgg.ebi.ac.uk/services/biolayout/) 
(13) installations.

 1. Download and save in a file the yeast protein interaction 
data (core dataset) from the Database of Interacting Proteins
(DIP) (http://dip.doe-mbi.ucla.edu/dip/). A total of 2,236 
proteins involved in 5,952 interactions were obtained by 
January 17, 2006. Alternatively, you may want to use a dif-
ferent protein interaction dataset from another species or 
database/source.

 2. Open the file with a file editor (e.g., Excel) and eliminate 
all columns but the ones corresponding to SwissProt identi-
fiers. You may want to write a Perl script to do this step. At 
this point the file should have this format:
A B
B C
.. ..

  which means that protein A interacts with protein B, B with 
C, and so on.

 3. Remove self-interactions (e.g., A A). The resulting filtered 
file constitutes our initial protein interaction dataset. This 
step produced a total of 2,186 proteins involved in 5,164 
interactions.

2. Materials2. Materials

2.1. Equipment2.1. Equipment

2.2. General Platform 
and Computing/
Programming Tools

2.2. General Platform 
and Computing/
Programming Tools

2.3. Bioinformatics 
Tools
2.3. Bioinformatics 
Tools

3. Methods3. Methods

3.1. Input Data

3.1.1. Yeast Protein 
Interaction Data

3.1. Input Data

3.1.1. Yeast Protein 
Interaction Data
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 1. Download and save in a file the ORFs encoding all yeast proteins 
from the Saccharomyces Genome Database (http://www.
yeastgenome.org/). Using SGD, we downloaded a total of 
6,714 yeast protein sequences by January 17, 2006 (see Note 3). 
These data constitute our initial yeast genome dataset.

 2. Download and save in different files the ORFs encoding the 
protein sequences of the complete genomes present in the 
GOLD (Genomes OnLine) Database (http://www.genomes-
online.org/) (see Notes 3 and 4). These data constitute our 
reference genome datasets.

 1. For each S. cerevisiae protein sequence perform a BLASTP 
search, with a threshold bit score of 50 and an expectation 
value (Evalue) of 10−05 (see Note 5) and default parameters, 
against each of the reference genome datasets. (See point 2 
under Section 3.1.2).

 1. From each BLAST output (see Section 3.2) we create an 
additional file (called, for example, yeast_vs_ecoli_parsed, the 
resulting BLAST output of yeast versus the Escherichia coli
genome) with this information: yeast sequence identifiers and 
best BLAST bit scores. The file format should look like this:
A 128
B 55
C 0
.. ..

  which means that yeast protein A versus the reference genome 
(i.e., E. coli in our example) has a BLAST bit score of 128, 
protein B has a bit score of 55, and protein C has no sequence 
similarity to the reference genome (i.e., the BLAST E-value is 
higher than i.e., the BLAST bit score is less than the specified 
threshold, or there is no sequence similarity at all; see
Section 3.2, and Notes 5 and 6).

 1. Use the file generated in Section 3.3 as input to build a 
PostgreSQL database (see Note 7) where the first field 
(column) (PostgreSQL primary key) represents yeast 
sequence identifiers and the remaining fields represent 
the best BLAST bit scores of yeast versus the reference 
genomes (see point 2 in Section 3.1.2). See Fig. 19.2 for 
an example of the result.

 1. Query each row of the database table (see Section 3.4) by 
first grouping the table fields (i.e., reference genomes) by 
taxonomy. One possible query involves grouping all genomes 
from Archaea together, followed by Bacteria, then Eukarya 
(see Fig. 19.2). This step is necessary for assessing sequence 
conservation (see Section 3.6).

3.1.2. Sequence Data3.1.2. Sequence Data

3.2. Sequence 
Similarity Searches
3.2. Sequence 
Similarity Searches

3.3. Parsing BLAST 
Outputs
3.3. Parsing BLAST 
Outputs

3.4. Building a 
PostgreSQL Database
3.4. Building a 
PostgreSQL Database

3.5. Querying the 
Database and Building 
Phylogenetic Profiles

3.5. Querying the 
Database and Building 
Phylogenetic Profiles



 Inferring Ancestral Protein Interaction Networks 421

Fi
g.

 1
9.

2.
 T

hi
s 

fig
ur

e 
sh

ow
s 

a 
sc

re
en

sh
ot

 o
f a

 s
im

pl
ifi

ed
 P

os
tg

re
SQ

L 
qu

er
y 

(th
e 

nu
m

be
r o

f f
ie

ld
s 

w
as

 re
du

ce
d 

to
 1

2 
an

d 
th

e 
nu

m
be

r o
f r

ow
s 

to
 1

0)
, i

n 
w

hi
ch

 th
e 

to
p 

lin
e 

re
pr

es
en

ts
 

th
e 

da
ta

ba
se

 q
ue

ry
, t

he
 fi

rs
t f

ie
ld

 (c
ol

um
n)

 re
pr

es
en

ts
 y

ea
st

 s
eq

ue
nc

e 
id

en
tif

ie
rs

,  a
nd

 th
e 

re
m

ai
ni

ng
 fi

el
ds

 re
pr

es
en

t t
he

 b
es

t B
LA

ST
 b

it 
sc

or
es

 o
f y

ea
st

 v
er

su
s 

th
e 

re
fe

re
nc

e 
ge

no
m

es
 

(fi
el

d 
na

m
es

) (
se

e
Se

ct
io

n 
3.

3)
. B

LA
ST

 b
it 

sc
or

es
 <

 5
0 

w
er

e 
se

t t
o 

ze
ro

. F
ie

ld
s 

w
er

e 
qu

er
ie

d 
in

 th
is

 o
rd

er
:  3

 A
rc

ha
ea

, 3
 B

ac
te

ria
, a

nd
 3

 E
uk

ar
ya

 g
en

om
es

 (s
ee

 to
p 

lin
e)

.



422 Peregrín-Alvarez

 2. Using the output of this database query, generate a binary 
sequence for each protein, in which a “1” represents those 
genomes for which the protein has a BLAST bit score ≥50
and “0” represents those genomes in which the protein is 
potentially not present or has a bit score below the thresh-
old (see Section 3.2). Save the resulting profiles in a file (see
Note 8). The file format should look like this:

  A 1111110001001110000000000000000000000000000000000000

  B 1111111111110111111111111111100010010000000110001111

  .. .. .. .. .. .. .. .. .. ..

  which means that protein A is potentially present in genomes 
1, 2, 3, 4, 5, 6, 10, 13, 14, 15, and so on.

 3. In addition, for each pair of yeast proteins from our inter-
action dataset (see point 3 in Section 3.1.1), query the 
database, as described, for those proteins that match the 
two interacting proteins from our interaction dataset, and 
generate a binary sequence in which a “1” represents those 
genomes for which both two proteins from our interaction 
dataset have a bit score ≥50 in our database, and a “0” rep-
resents genomes in which both proteins are not present in 
the different reference genomes (see Note 9). Save the result 
in a file. The file format should look like this:

  A B 111111000100000000000000000000000000000000000000000000

  B C 111111111111011111111111111110000001000000000110000

  .. .. .. .. .. .. .. .. .. ..

  which means that the interaction between protein A and B is 
potentially present in genome 1, 2, 3, 4, 5, 6, 10, and so on.

 1. Count the number of 1s in the two profile versions we have 
created (see points 2 and 3 in Section 3.5). The end result 
should be two files with these formats:
a. For individual proteins:
A 10
B 36
C 140
.. ..

  which represents that protein A is potentially present in 35 
reference genomes.
b. For interacting proteins:
A B 7
B C 31
D E 121
.. .. ..

  which means that the interaction A B is potentially present in 
7 reference genomes, and so on.

3.6. Analyzing 
Sequence
Conservation: Number 
of Genomes and 
Phylogenetic Extent

3.6. Analyzing 
Sequence
Conservation: Number 
of Genomes and 
Phylogenetic Extent
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 2. Transform the protein profiles (with the reference genomes—
table columns—grouped by taxonomy; see point 1 in 
Section 3.5) into an abbreviated profile of three 0s/1s in 
this order: Archaea, Bacteria, and Eukarya (see Note 10).
The file format should be:
A 011
B 110
.. ..

  which means that protein A is absent in Archaea but is 
present in Bacteria and Eukarya, and so on. These abbrevi-
ated profiles represent the phylogenetic extent (7) of the 
yeast protein sequences.

BioLayout (http://cgg.ebi.ac.uk/services/biolayout/) is an auto-
matic graph layout algorithm for similarity and network visualiza-
tion, and is free for academic and non-profit research institutions 
(see Note 11).

 1. Change the format of the file obtained in point 1a in Section 3.6
(i.e., protein A is potentially present in n reference genomes) by 
classifying the numeric values (i.e., the number of genomes in 
which homologs of a protein are found) into node classes (i.e., 
Nodes (proteins) with values ≤50 are assigned to class 1, values 
between 50 and 100 to class 2, values between 100 and 150 to 
class 3, and values >150 to class 4) (see Note 12).

 2. Concatenate the resulting file to the bottom of the file 
obtained earlier (see point 1b in Section 3.6). The end file 
format should look like this (see Note 13):
A B 7
B C 31
C D 121
//NODECLASS A 1
//NODECLASS B 1
//NODECLASS C 3
.. .. .. .. .. .. .. .. .. ..

 1. Run BioLayout. Click on File → Open in the menu, and 
select the file to be loaded (see point 2 in Section 3.7.1).
Click on Open. This step will produce a first look at the 
entire yeast protein interaction network.

 2. Change the network layout (e.g., node size and edge direc-
tionality) by clicking on Edit → Selection → Select All →
Tools → Properties → Vertices → Size [8], and Apply (to 
change node size); and click on Tools → Properties → General 
→ Graph Options, uncheck Directional, and click on Apply 
(to remove edge directionality in the network).

3.7. Visualization 
of Protein Interaction 
Data Using BioLayout 
Java

3.7. Visualization 
of Protein Interaction 
Data Using BioLayout 
Java

3.7.1. Input Data3.7.1. Input Data

3.7.2. Loading and 
Visualizing Protein 
Interaction Data

3.7.2. Loading and 
Visualizing Protein 
Interaction Data
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 3. Change the node color scheme by clicking on Tools → Prop-
erties → Classes, and changing the classes color (nodes) 
by clicking on the default colored boxes and choosing an 
appropriate color from the java pallet. This step is done 
in order to give a more meaningful color scheme to the 
nodes (proteins) in the network, i.e., we change node 
colors according to their degree of conservation. Here, 
we use a color grading from white (class 1, less conserved) 
to black (class 4, more highly conserved) (see point 1 in 
Section 3.7.1). Next, we add some text to the empty 
boxes to give a meaning to the different node classes (see
Fig. 19.3). Finally, click on Apply and then Ok in the 
Edit Properties menu.

 4. Click on View → Show Legend (see Note 14). At this point, 
the yeast interaction network should look like Fig. 19.4.

 1. Click on Edit → Filter by Weight → Yes, add the value 100 
in the box, and click on Ok (see Note 15).

 2. Click on View → Show All Labels. This step will add yeast 
sequence identifiers to the nodes in the resulting sub-network.

3.7.3. Inferring a Potential 
Ancestral State 
of the Yeast Protein 
Interaction Network

3.7.3. Inferring a Potential 
Ancestral State 
of the Yeast Protein 
Interaction Network

Fig. 19.3. BioLayout Edit Properties screenshot. Colors represent the conservation (i.e., the number of genomes in which 
yeast homologs are found, classified into four bin classes: ≤50; 50–100; 100–150; and >150 genomes).
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These steps will allow us to visualize our goal, a network of core 
proteins and interactions that potentially represents an ancestral 
state of the yeast protein interaction network (see Fig. 19.5).

 1. The main advantage of the method presented here is its sim-
plicity. Other much more complicated and time-consum-
ing methods for the reconstruction of ancestral genomes 
have been reviewed recently (17). These methods consider 
genomes as phylogenetic characters and reconstruct the 
phylogenetic history of the species and their ancestral states 
in terms of genome structure or function. The application 
of these methods in the context of protein interactions net-
works is an alternative approach for inferring ancestral pro-
tein interaction networks.

 2. Computational infrastructure is a limiting factor when using 
the approach discussed here. Given the high number of simi-
larity searches necessary to run our experiments, we have 
performed our analysis using the supercomputer facilities 

4. Notes4. Notes

Fig. 19.4. The conservation of the yeast protein interaction network. This network is mainly formed by a giant cluster of 
interconnected nodes, surrounded by very small protein interaction clusters. The conservation of the network can be 
seen easily by looking at the predominant node colors. Part of the network appears to be highly conserved (which is 
suggested by the high number of gray and black nodes in the network). (See the legend inset and Fig. 19.3).
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located at the Centre for Computational Biology (Hospital 
for Sick Children, Toronto, Ontario, Canada).

 3. Alternatively, the user may want to use other biological 
databases to retrieve these sequence data, such as COGENT 
(http://cgg.ebi.ac.uk/services/cogent/) or NCBI (ftp://
ftp.ncbi.nih.gov/genomes/).

 4. In this study, we used a filtered subset of the 335 complete 
genomes available in the GOLD database (see point 2 in 
Section 3.1.2) on January 17, 2006; that is, only one strain 
was used per species. This was done for simplicity and to 
avoid taxonomic redundancy. Thus, eventually a total of 
182 complete genomes were downloaded (19 Archaea, 129 
Bacteria, and 34 Eukarya). The user may want to download 
a smaller number of complete genomes in order to reduce 

Fig. 19.5. Ancestral state inference of the yeast protein interaction network. This yeast sub-network (part of the original 
yeast network; see Fig. 19.4) is formed by highly conserved (present in >100 genomes) proteins and interactions. 
A closer examination of the reduced profiles generated (see point 2 in Section 3.6) shows that all proteins in this 
sub-network are universally conserved (i.e., present in Prokarya and Eukarya). This suggests that this sub-network 
may represent the ancestral form of the yeast protein interaction network (5–7). In addition, it may represent a “core” 
sub-network that is common to other interaction networks from other species. It may be an ancient form of the protein 
interaction network in Eukarya (6), or possibly a protein interaction network present in the universal ancestor (7, 15). In 
fact, a further characterization of the functional categories of the proteins participating in this potential ancestral state 
of the yeast network shows that many of these proteins participate in processes suggested to have appeared early in 
evolution, such as energy, metabolism, transcription, translation, transport, and replication (7–8, 10, 16).
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similarity search space using BLAST. This reduction should 
be done with caution to maximize taxonomic coverage.

 5. A BLAST Evalue threshold of 10−05 is used initially to reduce 
the size of the BLAST output files. This initial Evalue thresh-
old is complemented in later steps by applying an additional 
BLAST bit score threshold of 50, which has been found to 
be appropriate for the analysis of sequence similarity across 
genomes (5). A BLAST bit score of 50 approximately cor-
responds to an Evalue of 10−06. The user may want to use a 
more stringent threshold.

 6. BLAST outputs can be parsed using your own Perl script or 
using Bioperl (http://www.bioperl.org/wiki/Main_Page). 
Alternatively, other BLAST output information could be 
stored in the parsed files (see Section 3.3), such as Evalue, 
% Sequence Identity, etc.

 7. Alternatively, the user may want to create a MySQL database 
(http://www.mysql.com/), or even a flat file, instead of a 
PostgreSQL database. We chose to build a SQL database 
because it allows us to store the data at low disk space cost, 
and in a safe and convenient format that could be easily que-
ried in possible more detailed future analyses.

 8. These profiles are called phylogenetic profiles (see Chapter 9 of 
Volume 2); they represent patterns of sequence co-occurrence 
across genomes (14). These profiles usually have a value of 
1 when a homolog is present, and 0 when it is absent.

 9. We consider a protein interaction to be present across genomes if 
both interacting proteins have detectable homologs in any of the 
reference genomes analyzed. Otherwise, we consider the interac-
tion to be not present in the reference genomes. The resulting 
profile is a modified version of a phylogenetic profile (5).

10. In the abbreviated profiles, the values 0 and 1 represent 
the pattern of absence and presence, respectively, in dif-
ferent taxonomic groups (7). These taxonomic groupings 
correspond to the three domains of life: Archaea, Bacteria, 
and Eukarya (see point 1 in Section 3.5). Different taxo-
nomic classifications also could be adopted. For example, 
one could further split the Eukaryotic domain into Protist, 
Fungi, Metazoa, and Plantae (7), or other more specific 
taxonomic classifications. Alternatively, a different format 
for the abbreviated profiles could be used, such as abbrevia-
tions instead of 0s/1s digits (e.g., protein1 BE, which means 
that protein1 is only present in Bacteria and Eukarya). This 
format requires correction since all yeast protein sequences 
are present in Eukarya by definition. Thus, for example, this 
hypothetical yeast abbreviated profile case “protein2 AB” 
should be corrected to “protein2 ABE.”
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11. Biolayout is a powerful and easy-to-use tool for network visu-
alization. An alternative is Cytoscape (http://www.cytoscape.
org/index.php), which is an open-source software package 
with additional features available as plug-ins (e.g., for network 
and molecular profiling analyses, new layouts, additional file 
format support, and connection with databases).

12. A file containing graph connections and properties is 
required by BioLayout to produce a graph layout. This file 
should have this format (see point 1B in Section 3.6):
A B 7
B C 31
D E 121
.. .. ..

  The first two columns represent two nodes (proteins) to be 
connected by an edge (protein interaction). The third col-
umn specifies an edge weight, which in our case represents 
the number of genomes in which homologs of two interact-
ing proteins are found. The preceding example will create a 
graph with five nodes (A, B, C, D and E). According to the 
input, nodes A and B are connected, B and C are connected, 
and finally D and E are connected.

  BioLayout allows specification of “node classes” to distin-
guish nodes from each other, using this format:
//NODECLASS A 1
//NODECLASS B 1
//NODECLASS C 3
.. .. .. .. .. .. .. .. .. ..

  Node classes will have different colors in the final BioLayout 
graph and are specified using property lines in the input file. 
This means that in the preceding example node A and B will 
share the same color, whereas node C will have a different 
color. Node classes can be created and modified using the 
class properties browser and vertex properties in the BioLay-
out properties dialog.

13. Notice that the values on the first part of this formatted 
file (e.g., A B 7) refer to protein interactions (edges) (see 
point 1b in Section 3.6), whereas the values of the second 
part (e.g., //NODECLASS A 1) refer to individual proteins 
(nodes) (see point 1a in Section 3.6).

 14. This step will display a class legend: a box with the meaning of 
node colors. Notice that by default the sentence “No Class” 
with a different color (usually green) will show up in the class 
legend. This will be the color that any node will have in the 
network if any data (in our case, sequence identifiers repre-
sented as interactions) do not match our class format.
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 15. Once a proper visualization of the network has been estab-
lished, this step will filter out non-highly conserved nodes, 
keeping only the highly conserved ones, which potentially 
form the ancestral state of the yeast interaction network (5–7).
Since we have searched for sequence similarities across 182 
other complete genomes, a conservation threshold of >100 
genomes (which, in our case, includes protein and interactions 
widely distributed across Prokarya and Eukarya) is appropriate 
for this analysis. Alternatively, the user may want to choose a 
more flexible or stringent criterion of conservation. The more 
stringent the criteria of conservation used as filter, the smaller 
the resulting subnetwork size, and vice versa.

The author thanks John Parkinson for reading the manuscript 
and making useful comments. This work was supported by the 
Hospital for Sick Children (Toronto, Ontario, Canada) Research 
Training Center.
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Chapter 20

Computational Tools for the Analysis of Rearrangements 
in Mammalian Genomes

Guillaume Bourque and Glenn Tesler

Abstract

The chromosomes of mammalian genomes exhibit reasonably high levels of similarity that can be used 
to study small-scale sequence variations. A different approach is to study the evolutionary history of rear-
rangements in entire genomes based on the analysis of gene or segment orders. This chapter describes 
three computational tools (GRIMM-Synteny, GRIMM, and MGR) that can be used separately or in 
succession to contrast different organisms at the genome-level to exploit large-scale rearrangements as a 
phylogenetic character.

Key words: rearrangements, algorithms, homologous regions, phylogenetic tree, computational tool.

The recent progress in whole genome sequencing provides an 
unprecedented level of detailed sequence data for comparative 
study of genome organizations beyond the level of individual 
genes. This chapter describes three programs that can be used in 
such studies:
 1. GRIMM-Synteny: Identifies homologous synteny blocks 

across multiple genomes.
 2. GRIMM: Identifies rearrangements between two genomes.
 3. MGR: Reconstructs rearrangement scenarios among multi-

ple genomes.
Genome rearrangement studies can be dissected into two steps: (1) 
identify corresponding orthologous regions in different genomes, 

1. Introduction1. Introduction

Jonathan M. Keith (ed.), Bioinformatics, Volume I: Data, Sequence Analysis, and Evolution, vol. 452
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and (2) analyze the possible rearrangement scenarios that can explain 
the different genomic organizations. The orthologous regions are 
typically numbered 1, 2, … n, and each genome is represented as 
a signed permutation of these numbers, in which the signs indicate 
the relative orientation of the orthologous regions. In multi-
chromosomal genomes, by convention, a “$” delimiter is inserted 
in the permutation to demarcate the different chromosomes.

The types of rearrangements that are considered by GRIMM 
and MGR are illustrated in Fig. 20.1 using this signed permu-
tation notation. In uni-chromosomal genomes, the most com-
mon rearrangements are reversals (also called inversions), shown 
in Fig. 20.1A; in signed permutation notation, a contiguous 
segment of numbers are put into reverse order and negated. In 
multi-chromosomal genomes, the most common rearrangements 
are reversals, translocations, fissions, and fusions. A fusion event 
concatenates two chromosomes into one, and a fission breaks 
one chromosome into two (see Fig. 20.1B). A translocation 
event transforms two chromosomes A B and C D into A D and 
C B, in which each letter stands for a sequence of signed genes 
(see Fig. 20.1C). There are other modes of evolution, such as 
large-scale insertions, deletions, and duplications, which are not 
addressed in the present chapter.

Two main categories of input data can be used to analyze 
genome rearrangements: (1) sequence-based data, relying on nucle-
otide alignments; and (2) gene-based data, relying on homologous
genes or markers, typically determined by protein alignments 
or radiation-hybrid maps. The appropriate acquisition of such 
datasets is discussed in Section 2.3. Processing of this raw data 
to determine large-scale syntenic blocks is done using GRIMM-
Synteny; this is discussed in Section 3.1. After constructing the 
syntenic blocks, GRIMM can be used to study the rearrange-
ments between pairs of species (1). GRIMM implements the 
Hannenhalli-Pevzner methodology (2–7), and can efficiently 
compute the distance between two genomes and return an 

Fig. 20.1. Rearrangements in signed permutations showing impact of: (A) reversals; 
(B) fusions and fissions; and (C) translocations.

(A) Reversal
 1 6 4 −5 2 −3 → 1 6 −2 5 −4 −3
(B) Fusion and Fission
 4 8 $    fusion  6 −1 7 2 $
 6 −1 7 2 $  →  4  8 −5 −12 11 $
 −5 −12 11 $   ← 10  3 9 $
 10  3  9 $   fission
(C) Translocation
 6 10 −5 11 $   6 10 1  8 −3 $
 9  4  $    → 9  4 $
 −7 −2  1  8 −3 $  −7 −2 −5 11  $
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optimal path of rearrangements; it is described in Section 3.2.
Finally, MGR is a tool to study these types of rearrangements 
in several genomes, resulting in a phylogenetic tree and a rear-
rangement scenario (8); it is described in Section 3.3.

Bourque and colleagues presented a detailed application of 
these tools (9). In that study, the global genomic architecture 
of four species (human, mouse, rat, and chicken) was contrasted 
using the two types of evidence: sequence- and gene-based data. 
That study is used as a reference point for many of the input and 
output files provided in this chapter.

Typically, the running time for GRIMM-Synteny is seconds to 
minutes. GRIMM takes a fraction of a second for most uses, and 
MGR takes minutes to days. However, it may take considerable time 
to prepare the inputs and analyze the outputs of each program.

At the time this is written, the software requires a UNIX system 
with shell access and a C compiler. PERL is also recommended 
for writing custom scripts to convert the output from other software 
to a format suitable for input to the software.

The GRIMM-Synteny, GRIMM, and MGR software, and dem-
onstration data used in this chapter, should be downloaded from 
http://www.cse.ucsd.edu/groups/bioinformatics/GRIMM/ 
The web site also has a web-based version of GRIMM and MGR 
(1). The Web-based version is for small datasets only and cannot 
handle the datasets described in this chapter.

After downloading the files, run the following commands. Note 
that % is the Unix prompt, the commands may differ on your compu-
ter, and the version numbers might have changed since publication.

For GRIMM-Synteny:
% gzip –d GRIMM_SYNTENY-2.01.tar.gz
% tar xvf GRIMM_SYNTENY-2.01.tar
% cd GRIMM_SYNTENY-2.01
% make

For GRIMM-Synteny demonstration data hmrc_align_data:
% gzip –d hmrc_align_data.tar.gz
% tar xvf hmrc_align_data.tar

For GRIMM:
% gzip –d GRIMM-2.01.tar.gz
% tar xvf GRIMM-2.01.tar
% cd GRIMM-2.01
% make

2. Materials2. Materials

2.1. Computer 
Requirements
2.1. Computer 
Requirements

2.2. Obtaining the 
Software
2.2. Obtaining the 
Software
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For MGR:
% gzip –d MGR-2.01.tar.gz
% tar xvf MGR-2.01.tar
% cd MGR-2.01
% make

The executable for GRIMM-Synteny is grimm_synt; the executa-
ble for GRIMM is grimm; the executable for MGR is MGR. Either 
copy the executable files to your bin directory or add the directo-
ries to your PATH variable. For updated installation details, please 
check the web site and read the README file in each download.

Various types of input datasets can be used to study large-scale 
rearrangements. Typically, every multi-genome comparative anal-
ysis project provides either sequence-based alignments or sets of 
homologous genes. The challenge is that the actual source and 
format differ from one study to the next. For this reason, a simple 
file format for GRIMM-Synteny, and another for GRIMM and 
MGR, was created containing only the information the respective 
programs needed. For each analysis project, it should be relatively 
straightforward to write custom conversion scripts (e.g., using 
PERL) to extract the information required from the original source 
dataset and output it in the standardized format required for the 
GRIMM/MGR suite. A description of the type of information 
needed is in the following subsections, and a detailed description 
of the formats is in Section 3.

It is also possible to acquire datasets with homologous genes 
or aligned regions from public databases, such as Ensembl, 
the National Center for Biotechnology Information’s (NCBI) 
HomoloGene, and the University of California, Santa Cruz 
Genome Bioinformatics web site (see web site references). The 
web site interfaces and database formats tend to change on a 
frequent basis. It may be necessary to combine multiple tables or 
do computations to get the required information.

The inputs to GRIMM-Synteny describe the coordinates of 
multi-way orthologous sequence-based alignments or multi-way 
orthologous genes. Either one of these is called an orthologous 
marker. There are several output files; principally, it outputs large-
scale syntenic blocks (similar to conserved segments but allowing for 
micro-rearrangements) comprised of many orthologous elements
that are close together and consecutive or slightly shuffled in 
order. The specific details are given in Section 3.1. The informa-
tion that you must have for every orthologous element is its coor-
dinates in every species. The coordinates include the chromosome,
starting nucleotide, length in nucleotides, and strand (or relative 
orientation). Optionally, you may also assign an ID number to 
each orthologous element (see Fig. 20.2).

2.3. Your Data2.3. Your Data

2.3.1. Data for Input 
to GRIMM-Synteny
2.3.1. Data for Input 
to GRIMM-Synteny
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If you do not have the coordinates in nucleotides, but do 
know the order and strand of the elements across all the genomes, 
you may specify fake coordinates that put them into the correct 
order, and tell GRIMM-Synteny to use the “permutation metric” 
that only considers their order.

It is possible to deal with data in which the strand of the 
orthologous markers is unknown (e.g., if the source data come 
from Radiation-Hybrid mapping), but it is beyond the scope of 
GRIMM-Synteny (see Note 1).

GRIMM can be used to compare the order of elements within 
orthologous regions in two genomes, or the orders of syntenic 
blocks between two genomes on a whole genome scale. MGR 
can be used for these purposes with three or more genomes.

GRIMM-Synteny produces a file called mgr_macro.txt 
suitable for input to GRIMM or MGR. If you are not using 
GRIMM-Synteny, you have to number your orthologous regions 
or syntenic blocks and create a file in a certain format that speci-
fies the orders and signs (orientations or strands) of these for each 
species. The format is described in Section 3 (see Fig. 20.3).

The signs are very important and the quality of the results 
deteriorates if you do not know them. They should be available 
with alignments or genes obtained from current whole genome 

2.3.2. Data for Input 
to GRIMM and MGR
2.3.2. Data for Input 
to GRIMM and MGR

(A) Excerpted lines from hmrc_genes_coords.txt
# Homologous gene coordinate inputs for GRIMM-Anchors
# genome1: Human
# genome2: Mouse
# genome3: Rat
# genome4: Chicken
0 2 69684252 160454 −1 6 87353142 137355 1 4 121355398 32464 1 22 23066 54613 1
0 2 69597801 41340 −1 6 87513091 18625 1 4 121416392 14848 1 22 89145 11384 1
0 X 127379875 52276 1 X 34167557 18067 1 X 134345833 48106 1 4 129940 18603 1
0 5 126929555 37439 1 18 57731473 26125 1 18 53194208 22005 1 W 4319028 17980 1

(B) Excerpted lines from hmrc_align_coords.txt
# 4-way alignment coordinate inputs for GRIMM-Anchors
# genome1: Human
# genome2: Mouse
# genome3: Rat
# genome4: Chicken
0 1 2041 54 + 17 64593043 54 + 4 158208520 52 − 1 56599921 54 +
0 1 2459 105 + 6 122223200 100 − 4 158202900 102 − 1 56600370 109 +
0 1 69708707 115 + 3 158985947 122 − 2 256411110 117 − W 2749741 117 −
0 2 19353347 207 + X 69783233 211 + X 71631432 211 + 1 108993546 211 +
0 X 153118976 182 + X 57378479 182 − X 159163656 182 − 4 1950771 182 −
0 _ 0 1 + _ 0 1 + _ 0 1 + Z 32174744 1081 +

Fig. 20.2. (A) Sample lines from gene coordinate file hmrc_genes_coords.txt used for GRIMM-Synteny. The first field 
(ID number) is set to 0 since it is not useful in this example. After that, each species has four fields: chromosome, start, 
length, sign. (B) Sample lines from alignment coordinate file hmrc_align_coords.txt. Notice the fourth alignment shown 
has human chromosome 2 aligned to mouse and rat X. The sixth “alignment” shown uses a fictitious chromosome “_” 
as a means to filter out a segmental duplication involving chicken chromosome Z.
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assemblies. However, if your source data really do not have them 
(e.g., gene orders obtained in a radiation hybrid map), GRIMM 
has procedures to guess relative signs (for two or more species). 
These are described in Sections 3.2.3 and 4.

(A) sample_data.txt (B) Excerpt from MGR −f data/sample_data.txt
>Genome1 (Genome4:3,(Genome2:0,Genome3:1)A5:1,Genome1:1)A6;
1 −3 −2 $
4 5 6 7 8 $
9 10 $
>Genome2 (C) Excerpt from MGR −f data/sample_data.txt
1 2 7 8 $  +−−−−−−−−−3−−−−−−−−−−−−Genome4
4 5 6 3 $  |
9 10 $  |  +−Genome2
>Genome3  | +−−1−−−A5
1 −7 −2 8 $  +−A6  +−−− 1—-Genome3
4 5 6 3 $         |
9 10 $         +−−1−−−Genome1
>Genome4
1 2 3 −5 −4 10 $
9 6 7 8 $

(D) Excerpt from grimm –f data/sample_data.txt –g 1,4
Number of Genes: 10 + 6 caps
Number of Chromosomes: 3
Multichromosomal Distance: 4
An optimal sequence of rearrangements:
Step 0: (Source)
−10 −9 $
 4 5 6 7 8 $
 1 −3 −2 $
Step 1: Chrom. 2, gene 1 [4] through chrom. 2, gene 2 [5]: Reversal
−10 −9 $
 −5 −4 6 7 8 $
 1 −3 −2 $
Step 2: Chrom. 3, gene 2 [−3] through chrom. 3, gene 3 [−2]: Reversal
−10 −9 $
  −5 −4 6 7 8 $
 1 2 3 $
Step 3: Chrom. 1, gene 2 [−9] through chrom. 2, gene 2 [−4]: Translocation
−10 4 5 $
 9 6 7 8 $
 1 2 3 $
Step 4: Chrom. 1, gene 4 [−15] through chrom. 3, gene 3 [3]: Fusion (Destination)
−10  4  5  −3  −2  −1  $
 −8  −7  −6  −9  $

(E) Excerpt from grimm –f data/sample_data.txt –m
Genome1 0 2 3 4
Genome2 2 0 1 4
Genome3 3 1 0 5
Genome4 4 4 5 0

Fig. 20.3. (A) Sample input file for GRIMM or MGR. Part of MGR’s output: (B) Newick representation of reconstructed 
phylogeny and (C) ASCII graphical tree representation of the same phylogeny. (D) Part of GRIMM’s output: an optimal 
sequence of rearrangements from Genome1 to Genome4. (E) GRIMM’s 4 × 4 pairwise distance matrix on the input 
genomes. MGR also produces a 6 × 6 matrix for the input genomes plus ancestral genomes.
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There are two main uses of GRIMM-Synteny: (1) GRIMM-Anchors 
to filter out non-unique alignments (Section 3.1.2), and (2) form-
ing synteny blocks from anchors (Sections 3.1.3 and 3.1.4). Both 
require the same input format, which is covered first.

We work with the human/mouse/rat/chicken orthologous align-
ments as a starting point (computed by Angie Hinrichs) (10, 11). 
The discussion for genes would be similar. This example has k = 
4 species. GRIMM-Synteny uses the coordinates of k-way align-
ments. The input file consists of many lines with the following 
format (“k-way coordinate format”), in which each line repre-
sents coordinates of a k-way alignment (but does not include the 
base-by-base details of the alignment). The same format is used in 
the output file blocks.txt that lists the coordinates of the synteny 
blocks. See Fig. 20.2 for excerpts from a four-way coordinate file, 
and Fig. 20.4A for an illustration of the coordinate system (in 
two-way data). The k-way coordinate format is as follows:
ID chr1 start1 length1 sign1 … chrk startk 

lengthk signk

 1. ID is a number, which can be used to number the align-
ments. If you do not care to do this, set it to 0. GRIMM-
Synteny does not use the value you put there on input. On 
output, the same format is used for the file blocks.txt and the 
ID is used to number the blocks.

 2. Species numbering: In the human/mouse/rat/chicken 
data, chr1, start1, length1, sign1 refer to coordinates 
in human. Species 2 is mouse. Species 3 is rat. Species 4 
is chicken. For your own data, choose your own species 
numbers and use them consistently. Please note that the 
coordinates were for particular assembly versions; they 
will change as newer assemblies are produced, and care 
must be taken in comparing results produced from differ-
ent assembly versions.

 3. The four coordinate fields per species are as follows:
 a. chrN: Chromosome name, e.g., “1,” “X,” “A1.”
 b.  startN: Starting nucleotide on the positive strand. It does 

not matter if you used 0- or 1-based coordinates, so long 
as you are consistent.

 c.  lengthN: Length in nucleotides. Combined with startN, 
this gives a half-open interval [startN, startN + lengthN) on 
species N. If your source data has start and end coor-
dinates of a closed interval [start,end] then the length 
is end–start + 1, whereas if it is a half-open interval 
[start,end), then the length is end–start.

3. Methods3. Methods
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 d.  signN: Strand (+ or 1 for positive, – or –1 for negative). 
Negative means that the aligned nucleotides are the ones 
paired to the positive strand nucleotides on the interval just 
specified. Be careful to check that you use the same coordi-
nate for both members of a base pair, since it is also common 
to have complementary coordinates on the two strands.

The input file may also include comment lines, which begin with 
“#.” Comments in a special format may be included to give the 
species names, as shown in Fig. 20.2.

Your multi-way alignment or multi-way ortholog procedure 
may produce partial alignments involving fewer than all k species; 
you must discard those. Your procedure may produce multiple 
hits involving the same coordinates. GRIMM-Synteny has a pro-
cedure GRIMM-Anchors (9) to assist in filtering out alignments 
with conflicting coordinates. Since all alignments with conflicting 
coordinates are discarded, we recommend that you first deter-
mine if your source data have information (e.g., scoring informa-
tion) that you could use to choose a unique best hit and discard 
the others. This procedure is described next, followed by the 
main procedure (GRIMM-Synteny).

 1. Create a file (e.g., align_coords.txt) with the alignment coor-
dinates in the k-way coordinate format described in Section
3.1.1.

 2. Create a directory (e.g., anchors) in which to place the out-
put files. The current directory will be used by default.

 3. Run the GRIMM-Anchors algorithm to filter out repeats 
and keep only the anchors. The basic syntax is:

% grimm_synt –A –f align_coords.txt –d anchors

You should replace align_coords.txt by the name of your 
alignment coordinates file, and anchors by the name of your out-
put directory. The switch –A says to run GRIMM-Anchors.
 4. Three output files are created in the directory anchors:
 a.  report_ga.txt: This is a log file with information on the 

number of conflicting alignments, the number of repeat 
families detected and filtered out (by merging together 
collections of conflicting alignments), and the number of 
anchors (unique alignments) remaining. In some cases, 
such as directed tandem repeats, overlapping alignments 
are still uniquely ordered with respect to all other 
alignments, so they are merged into a larger “anchor” 
instead of being discarded. This is useful for the purpose 
of determining larger synteny blocks, even if it might not 
be crucial for most downstream analyses.

 b.  unique_coords.txt: This has the same format as described 
in Section 3.1.1, but all conflicting alignments have been 
removed.

3.1.2. GRIMM-Anchors: 
Filtering Out Alignments 
with Non-Unique 
Coordinates

3.1.2. GRIMM-Anchors: 
Filtering Out Alignments 
with Non-Unique 
Coordinates



 Analysis of Mammalian Genomes 439

 c.  repeat_coords.txt: This lists the conflicting alignments that 
were merged or discarded, organized into repeat families.

A chromosome window is a specification of chromosomes 
(c1,…,ck) over the k species. Synteny blocks are formed by 
grouping together nearby anchors in each chromosome win-
dow, as shown in Fig. 20.4. This is controlled by two sets of 
parameters: parameters that control the maximum allowable gap 
between anchors, and parameters that control the minimum size 
of a block.

Let x = (x1,…,xk) and y = (y1,…,yk) be two points in the same 
chromosome window, with coordinates expressed in nucleotides. 
The distance between them in species N is dN(x,y) = |xN – yN| and 
the total distance between them is the Euclidean distance d(x,y) 
= |x1 – y1| + … + |xk – yk|.

Each anchor A can be represented as a diagonal line segment 
in k dimensions between two points within a chromosome win-
dow: a = (a1,…,ak) and a′ = (a1′,…,ak′) (see Fig. 20.4A). These are 
the two terminals of A. They are determined by the start coordi-
nates, lengths, and orientations in the k-way coordinate format. 
If the orientation in species N is positive, then aN = startN and aN′ 
= startN+ lengthN− 1, whereas if the orientation in species N is 
negative then the definitions of aN and aN′ are reversed.

Let A and B be two anchors in the same chromosome win-
dow. The total distance between A and B is the total distance 
between their closest terminals. Once the closest terminals have 
been determined, the distance between A and B in species N 
is the distance between those closest terminals in species N (see
Fig. 20.4B,C). The per-species distances are shown as d1 and d2,
whereas the total distance is d1 + d2. Had other combinations of 
anchor terminals been used (shown in Fig. 20.4B,C with dotted 
or dashed lines), the total distance would have been larger.

Anchors A and B in the same chromosome window are 
connected together if their distance in each species is less than 
a per-species gap threshold specified for that species (see the –g 
option). Groups of connected anchors form potential syn-
teny blocks. Alternately, anchors may be joined together if the 
sum of the distances across all species is less than a specified 
total gap threshold (see the –G option). This was the approach 
Pevzner and Tesler used in their human–mouse comparison 
(12, 13). The per-species threshold was added as additional 
species were considered, and seems to work better than the 
total gap threshold.

To distinguish between noise vs. real blocks, several meas-
urements of the minimum size of a block are available: the span, 
the support, and the number of anchors. (See Fig. 20.4B and the 
–m, –M, and –n options in the next section.) Any potential block 
that is smaller than these minimums is discarded.

3.1.3. Forming Synteny 
Blocks from Sequence-
Based Local Alignments
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Determining the relative orientations of blocks in each species 
can be subtle if there are micro-rearrangements. GRIMM-Synteny 
uses a set of criteria that is geared toward signed permutations (13).

If you only want to consider the order of the anchors (which 
is common in gene-order–based studies), prepare your data using 
either real coordinates or sham coordinates that put it into the cor-
rect order, and then use the permutation metric by specifying the 
option –p. This treats all anchors as length 2 nucleotides in every 
species (so that the two orientations of the anchor are distinguishable 
in each species) and no gaps between consecutive anchors in each 
species. This is achieved by keeping their chromosomes, orders, 
and signs, but recomputing their starting coordinates and lengths.

The process of joining anchors can result in blocks that are 
overlapping in some species or contained in another block in some 
species. The minimum size parameters filter out small blocks that 
are contained in large ones, but do not prevent overlaps among 
large blocks. This is in part due to different rearrangements of the 

Fig. 20.4. Forming blocks from anchors in GRIMM-Synteny. (A) Anchor coordinates. Coordinates are given genome-by-
genome, either as chromosome, start (minimum coordinate), length, sign (strand), or as chromosome window and the 
Cartesian coordinates of the two ends. (B, C). The total distance between two anchors is the Manhattan distance between 
their closest terminals (thick solid line). Distances between other terminals (dotted or dashed extensions) increase the 
distance. The per-genome distance components d

1 and d2 are indicated, and add up to the total d = d1 + d2.  A block 
consisting of these two anchors has per-species measurements of the span (total size including gaps) and support (total 
size not including gaps), as well as the total number of anchors (2). (D) Several blocks between human and mouse from 
(12), with lines showing how the anchors are joined.
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anchors in each species, and also to the use of parameters that are 
constant across each species instead of somehow adapted to each 
region within a species. GRIMM-Synteny has a phase to detect 
and repair block overlaps and containments. When these are 
detected, the blocks are recursively broken into several segments. 
Any segments smaller than the size minimums will be filtered 
out. This phase is run by default, and can be prevented using the 
switch –O (letter “oh”). One reason to prevent it would be to 
study rearrangements in anchors at the ends of block, in which 
two large blocks were brought together in some species and then 
their ends were mixed through further rearrangements.

Strips are sequences of one or more consecutive blocks (with 
no interruption from other blocks) in the exact same order with the 
same signs, or exact reversed order with inverted signs, across all 
species. In Fig. 20.3A, genes 4 5 forms a strip of length 2 (it appears 
as 4 5 or −5 −4, depending on the species), and all other blocks form 
singleton strips (x or –x, depending on the species). A most parsi-
monious scenario can be found that does not split up the strip 4 5 
(see (6)), so it would reduce the size of the permutations to recode 
it with blocks 4 and 5 combined into a single block. The option –c 
does this recoding by condensing each strip of blocks into a single 
block. (However, in applications such as studying the sequences of 
breakpoint regions, the separate boundaries of blocks 4 and 5 could 
be of interest, so it would not be appropriate to use the –c option.) 
If GRIMM-Synteny had produced a strip such as 4 5, it would either 
be because the two blocks are farther apart than the gap threshold, 
or because the overlap/containment repair phase split up a block 
and then its smaller pieces were deleted in such a way that what 
remained formed a strip of separate blocks.

The basic syntax of GRIMM-Synteny when used for forming 
synteny blocks is
% grimm_synt –f anchor_file –d output_dir [other 
options] 
Input/output parameters:

● –f Input_file_name: This is required and should contain the path 
to the file with the non-conflicting anchor coordinates.

● –d Output_directory_name: This is required. It specifies a direc-
tory into which GRIMM-Synteny will write several output files.

Gap threshold:
● –g N

–g N1,N2,N3,…
These specify the per-species gap threshold in nucleotides, 

either the same value in all species or a comma-separated list of 
values for the different species. Anchors are joined if in every 
species, their gap is below the per-species gap threshold for that 
species.

3.1.4. GRIMM-Synteny: 
Usage and Options for 
Forming Synteny Blocks
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● –G N: This specifies the total gap threshold. Anchors are 
joined if the total gap (sum of the per-species gaps) is below 
this threshold.

Minimum block size:
● –m N

–m N1,N2,N3,…
These specify the per-species minimum block spans, either the 

same value in all species or a comma-separated list of values for the 
different species. A block on chromosome c, with smallest coor-
dinate x and largest coordinate y, has span y − x + 1, so anchors 
and gaps both contribute to the span (see Fig. 20.4B). Blocks are 
deleted if their span falls below this threshold in any species.

● –M N
–M N1,N2,N3,…

These specify the per-species minimum block supports. The 
support of a block is the sum of its anchor lengths in nucleotides, 
which ignores gaps (see Fig. 20.4B). Blocks are deleted if their 
support falls below this threshold in any species.

● –n N: The minimum number of anchors per block. Blocks 
with fewer anchors are deleted. Since we do not consider 
deletions, this parameter consists of just one number, not a 
different number for each species.

Other settings:
● –c: If specified, strips of more than two blocks are condensed 

into single blocks.
● –O: If specified, the block overlap/containment repair phase 

is skipped.
● –p: If specified, use the “permutation metric.” The anchor 

order and signs in each species are retained, but the coordi-
nates are changed so that each anchor has length 2 and there 
is no gap between consecutive anchors (within each species, 
the ith anchor on a chromosome is regarded as having start 
coordinate 2i and length 2).

Output files: GRIMM-Synteny produces five files in the output 
directory specified by –d:

● report.txt: This is a detailed log file describing the com-
putations and phases that GRIMM-Synteny performed. It 
includes measurements for each block, such as number of 
anchors, per-species support and span of anchors, and micro-
rearrangement distance matrix. It also includes information 
about macro-rearrangements of all the blocks.

● blocks.txt: This has the coordinates of the blocks in the same 
format as described in Section 3.1.1 for anchor files.

● mgr_macro.txt: This file gives signed block orders on each 
chromosome in each genome in the GRIMM/MGR input file 
format described in Section 3.2.1 (see Fig. 20.3A). Coordinates 
and lengths in nucleotides are not included; to determine these, 
look up the blocks by ID number in blocks.txt.
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● mgr_micro.txt: This file lists the anchors contained in 
each block. For each block, the k-way coordinates of all its 
anchors are given, and the GRIMM/MGR permutation of 
the anchors is given. Since blocks are in just one chromo-
some per species, and since blocks have a definite sign, these 
permutations should be regarded as directed linear chromo-
somes (–L option in GRIMM/MGR). Also, in the permuta-
tions, strips of anchors have been compressed.

● mgr_micro_equiv.txt: This lists which blocks have the same 
compressed anchor permutations in mgr_micro.txt. In other 
words, it identifies blocks whose anchors underwent similar 
micro-rearrangements.

We discuss the data in the sample data directory hmrc_gene_data. 
Change to that directory. The four-way homologous genes were 
computed by Evgeny Zdobnov and Peer Bork (10, 11) and identi-
fied by their Ensembl IDs. We combined their data with Ensembl 
coordinates of those genes for the specific Ensembl builds they 
used. The file hmrc_genes_ensembl.txt is for informational pur-
poses only, and shows the Ensembl IDs combined with the gene 
coordinates. The file hmrc_genes_coords.txt is in the GRIMM-
Synteny four-way coordinate format.

First we filter out conflicting homologues:
% mkdir anchors 
% grimm_synt –A –f hmrc_genes_coords.

txt –d anchors

This produces a log file anchors/report_ga.txt and a coordinate 
file anchors/unique_coords.txt. The log file indicates there were 
8,095 homologous gene quadruplets, but a number of them 
had conflicting coordinates, resulting in 6,447 anchors. Details 
about the conflicts are given in a third output file, anchors/
repeat_coords.txt. In the sample data, we named the directory 
anchors_example instead of anchors so that you can run these 
examples without overwriting it. In the steps that follow, we also 
did this with directories gene7_example instead of gene7 and 
300K_example instead of 300K.

Next we form synteny blocks. The main run analyzed in the 
paper, gene7, was produced as follows:
% mkdir gene7 
% grimm_synt –f anchors/unique_coords.txt –d 

gene7 –c –p –m 6 –g 7

We used the permutation metric, so each gene is considered to 
have length 2 units. We required a minimum length of six units 
(i.e., size of 3 genes at length 2) in each species. Using –n 3 
(minimum of three anchors, regardless of size) instead of –m 6 
produced identical results, but at larger values, –n x and –m 2x
would not be the same, since –m 2x would allow for gaps.

3.1.5. Sample Run 1: 
Human-Mouse-
Rat-Chicken Gene-
Based Dataset
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Finally, –g 7 is the per-species gap-threshold, which moti-
vated naming this run gene7; we performed similar runs with 
thresholds from 1 through 20. We also varied other parameters. 
At smaller values of the gap-threshold, there is little tolerance 
for micro-rearrangements within blocks, so many small blocks 
are formed (but many of them are deleted for being below 
6 units, from –m 6). Setting it too high would keep a high number 
of anchors but low number of blocks by merging too many blocks 
together. The selection –g 7 retained a relatively high number of 
anchors and high number of blocks. In addition to this, for each 
combination of parameter settings, we also examined plots of the 
microrearrangements in the blocks (similar to Fig. 20.4D), ran 
the blocks through MGR, and did other tests. Unfortunately, 
optimal parameter selection is still somewhat an art. (Tools to 
produce such plots are highly data dependent and are not pro-
vided with the current release of GRIMM-Synteny. The plots are 
based on the anchor and block coordinates in mgr_micro.txt.)

We discuss the data in the sample data directory hmrc_align_data. 
Change to that directory. In (10), alignments between human 
and one to three of mouse, rat, and chicken, were computed by 
Angie Hinrichs and others at the UCSC Genome Bioinformat-
ics group. The alignment files were several hundred megabytes 
per chromosome because they included the coordinates of the 
alignments as well as base-by-base annotations. We extracted the 
coordinates of four-way alignments in this data. One-, two-, and 
three-way alignments were discarded. This is further described in 
(11). The file hmrc_align_coords.txt contains the four-way coor-
dinates of the alignments.

The UCSC protocol included several ways of masking out 
repeats. However, there were still a number of repeats left in the 
data, particularly in chicken, in which repeat libraries were not so 
thoroughly developed at that time. Evan Eichler provided us with 
coordinates of segmental duplications in chicken (10). We used 
GRIMM-Anchors to filter out alignments conflicting with the 
duplications, by adding the coordinates of the duplications into 
hmrc_align_coords.txt as shown in Fig. 20.2. We made a new 
chromosome “_” in human, mouse, and rat, and coded all the 
segmental duplications into four-way alignments at coordinate 
0 on “_” in human, mouse, and rat, and their true coordinate in 
chicken. This way, all the segmental duplications conflicted with 
each other in human, mouse, and rat (so that GRIMM-Anchors 
would filter them out) and conflicted with any real alignments at 
those coordinates in chicken (so that GRIMM-Anchors would 
filter those alignments out).

We filter out conflicting homologues:
% mkdir anchors
% grimm_synt –A –f hmrc_align_coords.txt –d 

anchors

3.1.6. Sample Run 2: 
Human-Mouse-Rat-Chicken 
Alignment-Based Dataset
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This produces a log file anchors/report_ga.txt and a coordinate 
file anchors/unique_coords.txt. Next, the main alignment-based 
run considered in the paper was produced as follows:
% mkdir 300 K
% grimm_synt –f anchors/unique_coords.txt –d 

300K –c –m 300000 –g 300000

We used –c to condense strips of blocks into single blocks. We 
used –m 300000 to set a minimum span of 300000 nucleotides 
per species. We used –g 300000 to set a maximum gap size of 
300000 per species.

We also produced blocks with other combinations of 
parameters and considered similar factors as for the gene7 
run in determining to focus on the “300K” blocks. In Fig. 
20.2B, notice that one of the alignments involves human 
chromosome 2 and mouse and rat chromosome X. Another 
sanity check we did on the output for each choice of param-
eters was to see if any blocks were formed between the X 
chromosome on one mammal and a different chromosome on 
another mammal, since such large-scale blocks would violate 
Ohno’s Law (14).

GRIMM implements several algorithms for studying rear-
rangements between two genomes in terms of signed per-
mutations of the order of orthologous elements. Most of the 
literature refers to this as gene orders, although we also apply 
it to the order of syntenic blocks, such as those produced by 
GRIMM-Synteny.

Hannenhalli and Pevzner showed how to compute the mini-
mum number of reversals possible between two uni-chromosomal
genomes in polynomial time (2), and Bader, Moret, and Yan 
improved this to linear time and implemented it in their GRAPPA 
software (see web site references and (5) ). GRIMM is adapted 
from the part of GRAPPA that implements this.

Hannenhalli and Pevzner went on to show how to compute 
the minimum number of rearrangements (reversals, transloca-
tions, fissions, and fusions) between two multi-chromosomal 
genomes in polynomial time (3). Tesler fixed some problems in 
the algorithm and adapted the Bader-Moret-Yan algorithm to 
solve this problem in linear time (6). Ozery-Flato and Shamir 
found an additional problem in the Hannenhalli-Pevzner algorithm
(7). GRIMM implements all of these for multi-chromosomal 
rearrangements.

Hannenhalli and Pevzner described an algorithm for studying 
rearrangements in genomes when the orientations of genes are 
not known (4). This algorithm is only practical when the number 
of singleton genes is small. GRIMM implements this algorithm, 
a generalization of it for the multi-chromosomal case, and a fast 
approximation algorithm.

3.2. GRIMM: 
Identifying Rearrange-
ments Between Two 
Genomes
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The input for GRIMM and MGR is a file that gives the permuta-
tion of orthologous regions in each genome, split into chromo-
somes. See Fig. 20.3A for a sample file with four genomes with 
up to three chromosomes in each. All four genomes consist of the 
same 10 regions but in different orders.

Each genome specification begins with a line consisting of 
the greater-than symbol followed by the genome name. Next, the 
order of the orthologous regions 1, 2, … n is given, with dollar 
sign symbol “$” at the end of each chromosome. The numbers 
are separated by any kind of white space (spaces, tabs, and new 
lines). Chromosomes are delimited by “$,”the start of the next 
genome, or the end of the file. Comments may be inserted in the 
file using the “#” symbol. The rest of the line is ignored.

The main usage of GRIMM is to compute the most parsimonious 
distance between two genomes and give an example of one rear-
rangement scenario (out of the many possible) that achieves that 
distance. An excerpt of GRIMM’s output for this usage is shown in 
Fig. 20.3D. There are other usages too, which have different outputs.

There are several usages of GRIMM: (1) compute the most 
parsimonious distance between two genomes (along with 
other statistics about the breakpoint graph), (2) exhibit a most 
parsimonious rearrangement scenario between two genomes, 
(3) compute matrices of pairwise distances and pairwise statistics 
for any number of genomes, and (4) compute or estimate signs 
of orthologous regions to give a most parsimonious scenario. 
The command-line syntax is as follows:
% grimm –f filename [other options]

Input/output:
● –f Input_file_name: This field is required and should contain

the path to the file with the starting permutations (e.g., 
data/sample_data.txt or a file mgr_macro.txt generated 
using GRIMM-Synteny).

● –o Output_file_name: The output is sent to this file. If –o is 
not specified, the output is sent to STDOUT.

● –v Verbose output: For distance computations, this gives 
information on the breakpoint graph statistics from the 
Hannenhalli-Pevzner theory. For other computations, this 
gives additional information.

Genome type:
● –C, –L, or neither: –C is uni-chromosomal circular distance and 

–L is uni-chromosomal directed linear reversal distance. If neither 
–C or –L is selected, the genomes have multi-chromosomal 
undirected linear chromosomes. (Undirected means flipping 
the whole chromosome does not count as a reversal, whereas 
directed means it does count. On single chromosome genomes, 
–L vs. multi-chromosomal are different in this regard.)

3.2.1. Input Format3.2.1. Input Format

3.2.2. Output3.2.2. Output

3.2.3. Usage and Options3.2.3. Usage and Options
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Genome selection: GRIMM is primarily used for pairs of genomes, 
but can also display matrices to show comparisons between all 
pairs. Input files with two genomes default to pairwise compari-
sons and files with more than two genomes default to matrix 
output, unless the following options are used:

● –g i,j: Compare genome i and genome j. Genomes in the 
input file are numbered starting at 1. With the –s option, a 
rearrangement scenario is computed that transforms genome 
i into genome j. Fig. 20.3D uses –g 1,4. For a file with two 
genomes, this option is not necessary, unless you want to 
compare them in the reverse order (–g 2,1).

● –m: Matrix format (default when there are more than two 
genomes if –g is not used). A matrix of the pairwise distances 
between the genomes is computed, as shown in Fig. 20.3E.
When used in combination with the –v option, matrices are 
computed for breakpoint graph parameters between all pairs 
of genomes.

Pairwise comparison functions (not matrix mode): Defaults to –d 
–c –s for multi-chromosomal genomes and –d –s for uni-chrom-
osomal genomes.

● –d: Compute distance between genomes (minimum number 
of rearrangement steps combinatorially possible).

● –s: Display a most parsimonious rearrangement scenario 
between two genomes. Not available in matrix mode.

● –c, –z: In multi-chromosomal genomes, a pair of additional 
markers (“caps”) are added to the ends of each chromosome 
in each genome, and the chromosomes are concatenated 
together into a single ordinary signed permutation (without 
“$” chromosome breaks). The details are quite technical; see
(3, 6, 7). These options display the genomes with added caps 
in two different formats: –c displays the concatenation as an 
ordinary signed permutation (not broken up at chromosomes) 
suitable as input to GRIMM with the –L option, whereas –z 
breaks it up by chromosome.

Unsigned genomes:
● –U n: A fast approximation algorithm for determining the 

signs in unsigned genomes via hill-climbing with n random 
trials. This works for any number of genomes, not just 
two. It works for some signs known and some unknown, 
or for all signs unknown. This was used in Murphy et 
al. to determine signs of blocks with only one gene (15).
A paper about the technical details is in preparation (see
Note 1 and Fig. 20.6).

● –u: Exact computation of the rearrangement distance between 
two unsigned genomes (all signs unknown). This also com-
putes an assignment of signs that would achieve this distance 
if the genomes were regarded as signed. For uni-chromosomal 
genomes, this uses the algorithm by Hannenhalli and Pevzner 
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(4) and for multi-chromosomal genomes, this uses a generaliza-
tion of that by Glenn Tesler (in preparation). The complexity is 
exponential in the number of singletons, so this option is only 
practical when the number of singletons is small (see Fig. 20.6).

We use the file data/sample_data.txt shown in Fig. 20.3A.
The command line to compute the scenario shown in Fig. 

20.3D is:
% grimm –f data/sample_data.txt –g 1,4

The command line to compute the matrix shown in Fig. 20.3E is:
% grimm -f data/sample_data.txt –m

(Note: –m is optional; since there are more than two genomes, 
it is assumed unless –g is used.)

Additional details about the breakpoint graphs can be shown 
in either of these by adding the option –v.
% grimm –f data/sample_data.txt –g 1,4 –v
% grimm –f data/sample_data.txt –m –v

GRIMM can also be run on the files mgr_macro.txt output by 
GRIMM-Synteny using similar command lines but changing the 
filename.

Of greater interest, however, would be to run GRIMM after 
MGR has computed the topology of a phylogenetic tree and pos-
sible gene/block orders at its ancestral nodes. GRIMM would 
then be appropriate to study the breakpoint graph or possible 
scenarios on a branch of the tree.

The Multiple Genome Rearrangement Problem is to find a phyl-
ogenetic tree describing the most “plausible” rearrangement sce-
nario for multiple species. Although the rearrangement distance 
for a pair of genomes can be computed in polynomial time, its use 
in studies of multiple genome rearrangements has been some-
what limited since it was not clear how to efficiently combine 
pairwise rearrangement scenarios into a multiple rearrangement 
scenario. In particular, Caprara demonstrated that even the sim-
plest version of the Multiple Genome Rearrangement Problem, 
the Median Problem with reversals only, is NP-hard (16).

MGR implements an algorithm that, given a set of genomes, 
seeks a tree such that the sum of the rearrangements is minimized 
over all the edges of the tree. It can be used for the inference 
of both phylogeny and ancestral gene orders (8). MGR out-
puts trees in two different formats described in the following: 
(1) Newick format and (2) ASCII representation. The algorithm 
makes extensive use of the pairwise distance engine GRIMM. 
This section first provides a detailed description of the input and 
output format. Next, it describes two typical standard runs, one a 
toy example and one of the human-mouse-rat-chicken dataset.

3.2.4 Sample Run: 
Toy Example
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The gene order input format for MGR is the same as for GRIMM. 
For an example with four genomes with two or three chromosomes 
each see Fig. 20.3A. This small sample input file can also be found in 
the MGR package in the subdirectory data as sample_data.txt.

The Newick Format uses nested parenthesis for representing trees. 
It allows the labeling of the leaves and internal nodes. Branch 
lengths corresponding to the number of rearrangements can also 
be incorporated using a colon. For instance, the example shown 
in Fig. 20.3A would produce a tree in Newick Format shown in 
Fig. 20.3B. Note that the internal nodes correspond to ancestral 
nodes and are labeled using the letter A followed by a number 
(e.g., A4). Also note that the Newick Format specifies a rooted 
tree with ordered branches, but MGR determines an unrooted 
tree, so MGR chooses an arbitrary location for the root. Your 
additional knowledge of the timeline should be used to relocate 
the root and order the branches.

The ASCII graphical representation of the tree is generated by a 
modified version of the RETREE program available in the PHYLIP 
package by Joe Felsenstein (see web site references). The number of 
rearrangements that occurred on each edge is shown and (unless the 
–F switch is selected, see the following) the edges are drawn pro-
portionally to their length. When no number is shown on an edge it 
means that no rearrangement occurred on that edge. See Fig. 20.3C
for the tree associated with the example from Fig. 20.3A.

There are three main usages of MGR: (1) with data from a file, 
(2) with simulated data, and (3) to display previous results. The 
current description focuses on the first usage, which represents 
the most common application. The command-line syntax is as 
follows:
% MGR –f filename [other options]

Input/output:
● –f Input_file_name: Same as in GRIMM.
● –o Output_file_name: Same as in GRIMM.
● –v: Verbose output. This is very important to visualize and 

record the progress of MGR, especially for large datasets. 
Using this option, the initial input genomes are reported 
along with their pairwise distances. Following that, each 
rearrangement identified in the procedure and the interme-
diate genomes are reported. The program terminates once 
the total distance between the intermediate genomes of the 
various triplets has converged to zero.

● –w: Web output (html). Should not be combined with the –v 
option but allows for a more elaborate html report. This option 
can also be used to redisplay in html format a previous result (if 
used in combination with the –N option, see README).

3.3.1. Input Format3.3.1. Input Format
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● –W: Width (in characters) of the tree displayed (default is 
80). Only affects the way the ASCII representation of the 
tree is displayed.

● –F: fixed size edges in the tree displayed. Displays fixed size 
edges in the ASCII representation instead of edges propor-
tional to their length.

Genome type:
● –C, –L, or neither: Uni-chromosomal circular genomes, uni-

chromosomal directed linear genomes, or multi- chromosomal 
undirected linear genomes. These are the same as in GRIMM.

Other options:
● –H: Heuristic to speed up triplet resolution:

–H 1: only look at reversals initially, and pick the first good one.
–H 2: only look at reversals initially, and take the shortest one.
Especially for large instances of the problem (e.g., more 

than 100 homologous blocks, or more than five genomes), these 
options can greatly speed up the algorithm by restricting the search 
and the selection to specific categories of good rearrangements (see
Note 2).

● –c: Condense strips for efficiency. This combines strips of two 
or more homologous blocks that are in the exact same order 
in all k genomes being considered. If this option is selected, 
the condensing procedure is called recursively but the whole 
process is seamless as the strips are uncondensed before the 
output is generated. This option can greatly speed up MGR, 
especially if the starting genomes are highly similar. This is 
related to GRIMM-Synteny’s –c option; the difference is that 
GRIMM-Synteny’s –c option changes the blocks that are out-
put, whereas MGR’s –c option affects internal computations 
but uncondensed block numbers are used on output.

● –t: Generate a tree compatible with the topology suggested 
in the file. Forces MGR to look for an optimal rearrangement 
scenario only on the tree topology provided by the user (see
Note 3).

To run MGR on the example displayed in Fig. 20.3A, do:
% MGR –f data/sample_data.txt

The output should be similar to the output displayed in Fig. 20.3B,C
with some additional information on the parameters used and on the 
permutations associated with the input genomes and the ancestors 
recovered. To view the same result but in html format, try:
% MGR –f data/sample_data.txt –w –o 

sample_out.html

The file data/hmrc_gene_perm.txt is identical to the file gene7/
mgr_macro.txt generated in Section 3.1.5 based on orthologous 
genes. It contains the human, mouse, rat, and chicken genomes 
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represented by four signed permutations of 586 homologous 
blocks. Run MGR on this example as follows:
% MGR –f data/hmrc_gene_perm.txt –H2 –c –o 

hmrc_gene_perm_out.txt

Even using the –H2 and –c switches to speed up computations, 
this is a challenging instance of the Multiple Genome Rearrange-
ment problem that will probably take a few hours to complete 
on most computers. The final output (hmrc_gene_perm_out.txt) 
should be identical to the file data/hmrc_gene_perm_out.txt. To 
get a better sense of how quickly (or slowly) the program is con-
verging, you can use the –v switch:
% MGR –f data/hmrc_gene_perm.txt –H2 –c –v –o 

hmrc_gene_perm_out1.txt

but of course, this will also generate a much larger output file. An 
actual rearrangement scenario between one of the initial genomes 
and one of the recovered ancestors can be obtained by extracting 
the permutations from the bottom of the output file, creating a 
new input file (e.g., hmrc_result.txt) and running:
% grimm –f hmrc_result.txt –g 1,5

To facilitate the comparison of the initial, modern day, genomes 
with the recovered ancestral genomes, it is also possible to plot the 
various permutations (see Fig. 20.5) (15). However, the tools to 
produce such plots are highly data dependent and are not provided 
with the current release of MGR. For challenging examples, when 
the initial pairwise distances are significant as compared with the 
number of homologous blocks (e.g., in the current example), it 
is possible to find alternative ancestors satisfying the same overall 
scenario score. This in turn can lead to the identification of weak
and strong adjacencies in the ancestors (see Note 4).

 1. Radiation-hybrid maps and missing signs. In (15), an eight-
way comparison was done among three sequenced species 
(human, mouse, and rat) and five species mapped using a 
radiation-hybrid approach (cat, cow, dog, pig, and on some 
chromosomes, horse). GRIMM-Synteny is not appropriate 
to use due to the RH-mapped data. A method is described in 
that paper to construct syntenic blocks that take into account 
the mixed coordinate system and types of errors that occur 
with RH maps. In blocks with two or more genes, an infer-
ence about the orientation of the block in each species was 
easy to make. However, singleton blocks (supported by a 
single gene) had known orientations in the sequenced species

4. Notes4. Notes
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Fig. 20.5. Graphical visualization of the permutations associated with two modern genomes (Human and Mouse) and an 
ancestral permutation (Mammalian Ancestor) as recovered by MGR (15).

(human, mouse, and rat), and unknown orientations in the 
other species. GRIMM was used to guess the signs in the 
other species with the –U option.

 2. MGR heuristics. The –H heuristics rely on the simple 
assumption that reversals, and specifically short reversals in 
the case of –H2, represent a more common evolutionary 
event as compared with translocation, fusions, and fissions. 
These heuristics also allow a more robust analysis of noisy 
datasets that may contain sign errors or local misordering.

 3. Fixed topology. MGR can be invoked using the –t option 
to reconstruct a rearrangement scenario for a specific tree 
topology. There could be various reasons to use this option: 
to compare the score of two alternative topologies, accel-
erate computations, etc. The desired topology needs to be 
specified in a separate file using the Newick format without 
edge lengths. In such topology files, genomes are referenced 
using identifiers from 1 to k, where 1 is the genome that 
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(A) File data/unsigned1.txt 

>genome1 
1 2 3 4 5 
>genome2 
1 4 3 2 5 
>genome3 
2 1 3 4 5 

(B) Excerpt from /   grimm −f data/unsigned1.txt −L −u

Distance Matrix: 
genome1                 0 1 1  
genome2                 1 0 2  
genome3                 1 2 0  

(C) Excerpt from /   grimm −f data/unsigned1.txt −L –u −g 1,2 

An optimal sequence of reversals: 
Step 0: (Source) 
  1   2   3   4   5  
Step 1: Reversal (Destination) 
  1  −4 −3 −2   5 

(D) Excerpt from /   grimm −f data/unsigned1.txt −L −U 100 

Best score: 4 

A best scoring solution: 
>genome1 
1 2 3 4 5  
>genome2 
1 −4 −3 −2 5  
>genome3 
−2 −1 3 4 5  

Distance matrix for that specific solution: 
genome1                 0 1 1  
genome2                 1 0 2  
genome3                 1 2 0 

Fig. 20.6. Unsigned data. (A) Input file. Each genome has one chromosome, directed linear, so the –L option is used on 
all commands. (B–D). Excerpts from runs. (B, C) The –u option does an exact computation for each pair of genomes. (D)
One hundred trials of an approximation algorithm are performed that seeks a best global assignment of signs.

appears first in the main gene order file, 2 is the genome 
that appears second, etc. See the file data/sample_tree.txt 
for an example associated with data/sample_data.txt. The 
command line to run this example would be:

  % MGR –f data/sample_data.txt –t data/sam-
ple_tree.txt

 Note that the scenario recovered is slightly worse than the 
scenario shown in Fig. 20.3C with seven rearrangements 
instead of six, but the tree topology matches the tree topol-
ogy in data/sample_tree.txt. The details of the algorithm 
used for this are in (15).
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 4. Alternative ancestors. For a given ancestor, when the ratio 
between the total number of rearrangements of the three 
incident edges and the number of common blocks is high, 
it is often possible to find alternative ancestors also mini-
mizing the total number of rearrangement events on the 
evolutionary tree. By exploring a wide range of such alter-
native ancestors, it is possible to distinguish between weak 
and strong areas of the ancestral reconstructions. Specifi-
cally, adjacencies that are present in all of the observed 
alternative ancestors are called strong adjacencies, whereas 
adjacencies that are not conserved in at least one of the 
alternative ancestors are called weak adjacencies (see (15)
for more details). The number of weak adjacencies iden-
tified in this manner is actually a lower bound for the 
true number of weak adjacencies since only a subset of all 
the alternative solutions can be explored. This search for 
alternative ancestors is available in MGR for k = 3 using 
the –A switch but is not described further in this chapter.
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Chapter 21

Detecting Lateral Genetic Transfer

A Phylogenetic Approach

Robert G. Beiko and Mark A. Ragan

Abstract

Nucleotide sequences of microbial genomes provide evidence that genes have been shared among 
organisms, a phenomenon known as lateral genetic transfer (LGT). Hypotheses about the importance 
of LGT in the evolution and diversification of microbes can be tested by analyzing the extensive quan-
tities of sequence data now available. Some analysis methods identify genes with sequence features 
that differ from those of the surrounding genome, whereas other methods are based on inference and 
comparison of phylogenetic trees. A large-scale search for LGT in 144 genomes using phylogenetic 
methods has revealed that although parent-to-offspring (“vertical”) inheritance has been the domi-
nant mode of gene transmission, LGT has nonetheless been frequent, especially among organisms that 
are closely related or share the same habitat. This chapter outlines how bioinformatic and phylogenetic 
analyses can be built into a workflow to identify LGT among microbial genomes.

Key words: Lateral genetic transfer, phylogenetic analysis, multiple sequence alignment, orthology, 
edit paths.

Lateral genetic transfer among prokaryotes has been recog-
nized as an evolutionary mechanism for some time (1–3),
but quantifying its extent and role could be undertaken only 
after complete genome sequences began to become available. 
Many major bacterial lineages are now represented by one or 
more sequenced genomes, and several genera (Chlamydia, 
Escherichia, and Streptococcus) are represented by five or more 
isolates in the set of publicly available genome sequences. 
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This depth and breadth of taxonomic sampling allowed us 
to investigate LGT at “short” (e.g., within-genus) and “long” 
(e.g., intra-phylum or -domain) distances among 144 sequenced 
prokaryotic genomes (4). The results from this analysis, the most 
extensive application so far of rigorous phylogenetic methods 
to this question, confirmed many previous conjectures about 
LGT, including the tendency of genes encoding information-
processing proteins to be shared less frequently than genes 
encoding metabolic enzymes (5, 6) and, based on the hybrid
nature of the Aquifex aeolicus and Thermoplasma acidophilum
genomes, the apparent role of LGT in habitat invasion (7, 8).

The best phylogenetic methods are explicitly based on models 
of the evolutionary process. Model-based methods provide a more 
robust framework for evaluating instances of LGT than do sur-
rogate or parametric methods, which instead identify anomalous 
compositional features, patterns, or distributions that are not obvi-
ously consistent with vertical genetic transmission. When applied to 
the genome of Escherichia coli K12, four surrogate methods agree 
in their identification of anomalous genes less often than would 
be expected by chance (9, 10). However, phylogenetically based 
approaches too are not without their complications. For example, 
they depend on accurate delineation of sets of orthologous genes 
and on appropriate alignment of multiple sequences, two problem 
areas that remain the subject of intensive research. Simulations also 
show that some phylogenetic methods are not robust to violations 
of underlying evolutionary assumptions (11, 12), and all methods 
are of little use where phylogenetic signal has decayed completely.

This chapter outlines how procedures for recognizing puta-
tively orthologous groups of genes, aligning multiple sequences, 
and inferring and comparing phylogenetic trees can be integrated 
into a high-throughput workflow to identify instances of LGT 
among microbial genomes. Alternative procedures, and opportu-
nities for further refinement, are also presented.

 1. Sequenced microbial genomes are available from the FTP 
site of the National Center for Biotechnology Information
(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/), with spe-
cific genomes available in subdirectories Genus_species_strain.
Each molecule of DNA (e.g., chromosomes, plasmids) from 
the genome of a given organism is represented by a suite 
of files (Note 1). The file with the annotations needed to 
construct an LGT workflow is the “.gbk” file, which contains
the complete DNA sequence as well as information on each 
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predicted protein. The “CDS” tag for a given protein iden-
tifies the genomic coordinates of its corresponding gene, 
and whether the coding sequence can be read directly from 
the displayed DNA sequence, or must instead be reverse 
complemented to obtain the correct amino acid translation. 
The .gbk file also contains the amino acid translation, the 
annotated function (if any), and database references that 
can be useful when working with the protein sequence in 
GenBank.

 2. Functional annotations of gene products and organisms can 
be obtained from many sources, but a few web sites offer 
particularly comprehensive annotations of primary data. The 
NCBI Taxonomy database (http://www.ncbi.nlm.nih.gov/
Taxonomy/) provides a useful although non-canonical refer-
ence for classification of microbial organisms. Where no con-
sensus exists on microbial classification, the NCBI Taxonomy 
database may offer an adequate starting point. The Clusters of 
Orthologous Groups database (13) contains useful functional 
annotations of proteins. Although we used a different method 
(described in Section 3.1) to infer orthologs, we retained the 
functional categories proposed in the CoG database to exam-
ine the functional annotations of putatively transferred genes. 
The Institute for Genomic Research (TIGR) also provides a 
list of “role categories” that classify protein functions in detail, 
and a database of genome properties with information about 
the basic sequence properties of every genome in the data-
base, and about the lifestyle and metabolic features of the cor-
responding organisms (14).

All of the analytical tools described in the following are freely 
available from the World Wide Web or from the authors, and 
with two exceptions (TEIRESIAS and GBLOCKS) the source 
code is available as well.
MCL (15): http://micans.org/mcl/
TEIRESIAS (16): http://cbcsrv.watson.ibm.com/Tspd.html
WOOF (17): http://bioinformatics.org.au/woof
CLUSTALW (18): http://www.ebi.ac.uk/clustalw/
T-COFFEE (19): http://www.tcofee.org/Projects_home_page/

t_coffee_home_page.html
Poa (20): http://www.bioinformatics.ucla.edu/poa/
Prrn (21): http://www.cbrc.jp/∼gotoh/softdata.html
MAFFT (22): http://align.bmr.kyushuu.ac.jp/mafft/software/
MrBayes (23): http://mrbayes.csit.fsu.edu/index.php
GBlocks (24): http://molevol.ibmb.csic.es/Gblocks.html
CLANN (25): http://bioinf.may.ie/software/clann/
EEEP (26): http://bioinformatics.org.au/eeep

2.2. Program 
Availability
2.2. Program 
Availability
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What follows is a general description of the methods we used 
in our analysis of 144 genomes (4), and the parameter settings 
reported here correspond to those used in that analysis. More 
details on the use of these methods can be found in the Support-
ing Information to (4) and in the original papers cited there.

 1. All-versus-all BLASTP (27) is performed on the complete 
set of predicted proteins from all genomes in the analysis. 
Every protein-protein BLASTP match with an associated 
expectation score e ≤ 1.0 × 10−3 is kept and is normalized by 
dividing by its self-score (obtained from a BLASTP compari-
son of the protein against its own sequence).

 2. The matches between proteins implied by normalized 
BLASTP similarity are used as the basis for Markov cluster-
ing using MCL. Validation of MCL on the Protein Data 
Bank (28) suggested that a relatively low inflation parameter 
of 1.1 was appropriate (29). The Markov clusters are inter-
preted as sets of homologous proteins, from which ortholo-
gous relationships can be extracted.

 3. Each Markov cluster is subjected to single-linkage clus-
tering (30) to determine putatively orthologous groups 
(Fig. 21.1). Maximally representative clusters (MRCs) 
contain no more than one representative protein from any 
given genome, and are maximal in that either the next 
protein(s) added by lowering the normalized BLASTP 
threshold would duplicate genomes already in the MRC, 
or the MRC represents an entire Markov cluster, and no 
further proteins can be added by decreasing the normal-
ized BLASTP threshold. MRCs are interpreted as puta-
tive ortholog families, and MRCs with ≥ 4 proteins (the 
minimum size that can yield meaningful unrooted phylo-
genetic trees) are retained.

 1. Alternative alignments are generated for the protein 
sequences in each MRC using different alignment algorithms 
(e.g., T-COFFEE, CLUSTALW, Poa, Prrn, and MAFFT) 
and, where appropriate, a range of gap-opening and gap-
extension penalty settings.

 2. In parallel with the preceding, conserved patterns are 
extracted from each pair of proteins in each unaligned MRC 
using the TEIRESIAS pattern-detection algorithm. To be 
considered as a pattern here, a pair of substrings must have 
at least 3 literal matches (L) within a window of total length 
(W) no greater than 15. Each pattern is assigned a weight 
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based on its probability of occurring by chance, and by its 
positional conservation relative to other extracted patterns.

 3. The extent to which these conserved patterns are recovered 
intact and precisely aligned with each other in each alterna-
tive alignment is assessed using the word-oriented alignment 
function WOOF. The alignment yielding the highest score is 
retained for subsequent analysis.

 4. Ambiguously aligned regions (e.g., ragged ends, sparsely 
populated columns and large gaps) are “trimmed” from 
each winning alignment of n sequences using GBLOCKS 
with relatively conservative settings (see Note 2).
Settings for GBLOCKS:
Minimum number of sequences for a conserved position: 

n × 0.5 + 1
Minimum number of sequences for a flank position: 

n × 0.5 + 1
Maximum number of contiguous non-conserved positions: 

50
Minimum length of a block: 5
Allowed gap positions: All

Maximally representative cluster (MRC) 
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Fig. 21.1. Schematic for hybrid protein clustering strategy. Each protein in the hypotheti-
cal Markov cluster shown below is identified with a letter that corresponds to its host 
genome, with genomes A and B represented by two (putatively paralogous) proteins. 
Vertical and horizontal lines indicate clustering relationships within the set of proteins, 
with a horizontal line indicating the maximum normalized BLASTP threshold at which 
a given cluster exists. Every cluster that exists here within the group (A

1, B1, C1, D1, E1, F1) is 
a representative cluster because no genome is represented in it more than once, but 
the cluster containing all six of these proteins is maximally representative because, in 
this example, any further extension of the cluster would lead to duplication of genomes 
A and B.
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 1. Trimmed alignments are converted into Nexus format 
by adding the appropriate header information (31), and 
MrBayes command blocks (23) describing run parameters 
are added to the Nexus files. The following settings were 
selected based on extensive calibration and sensitivity testing 
of a subset of MRCs (32):

 a. Number of samples (see Note 3): for data sets with <30 
protein sequences, a single MCMC run of between 
250,000 and 550,000 generations is performed. For 
data sets of ≥30 sequences, replicate MCMC runs are 
carried out, each of length 106. The number of replicates 
is equal to the number of sequences in the alignment 
set, divided by ten and rounded down: thus three repli-
cate runs are performed for sets with 30–39 proteins, 
four runs for sets with 40–49 proteins, and so on. Each 
MCMC run involves four Markov chains, with the 
heating parameter set to 0.5.

 b. Model choice: Because it is not feasible to fit all of the 
free parameters in an amino acid general time-reversible 
(GTR) model, empirical models of sequence substitution 
are typically used. MrBayes 3.04β supports five substitu-
tion models potentially relevant to microbial data sets: 
PAM, WAG, VT, Blosum, and JTT (23). Each is assigned 
an equal prior probability (0.2 in the case of five mod-
els), and the Markov chains are allowed to swap among 
them. Among-site rate variation (ASRV) is modeled by a 
four-category discrete approximation to the (continuous) 
gamma distribution, with uniform distribution over the 
interval [0.10, 50.00] and automatic estimation of the 
shape parameter α.

 c.  Priors on branch lengths and trees: Each tree is assigned 
an equal prior probability, and edge-lengths are assigned 
a uniform prior on the interval [0.0, 10.0].

 2. The burn-in phase is identified from the likelihood progress 
of a run, as follows: first, the mean of all log-likelihood 
scores from the final 100,000 iterations of a given run is 
determined. The end of the burn-in phase is then defined to 
be the first cold chain sample in the MCMC run that has a 
log-likelihood score exceeding this mean value (see Note 4).
If the burn-in point has occurred too late in the run to yield 
the target number of post-burn-in samples, the entire run is 
discarded and performed again.

 3. Where replicate runs have been carried out, the post-burn-in 
samples from the replicates can be combined into a single 
“metachain” prior to being summarized. However, this 
should be done only if all the chains have converged on 
the target distribution. Convergence can be evaluated by 
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comparing the range of log-likelihood values associated with 
each replicate run, but topological convergence should also 
be addressed using a criterion such as d (32), which measures 
the variation in bipartition posterior probabilities between 
replicates. A lack of convergence across short replicate runs 
strongly suggests that much longer runs are needed, either 
to permit convergence on the target distribution or to yield 
an adequate number of samples once the target distribution 
has been reached.

 4. Sampled post-burn-in trees are summarized to yield poste-
rior probabilities on trees and bipartitions by running the 
“sumt” command in MrBayes, specifying the appropriate 
burn-in point.

 5. A reference hypothesis of organismal or genomic descent is 
required (see Note 5), for example a supertree. From the set 
of bipartitions with posterior probabilities ≥ 0.95 (see Note 6),
a supertree is constructed using software such as CLANN. 
Several supertree methods are available in CLANN, but 
we favor the matrix representation with parsimony (MRP) 
method (33, 34) because of its wide use and applicability to 
very large data sets.

 1. Given a reference tree that serves as a null hypothesis of 
organismal or genomic descent, its topology is compared with 
the topology of each protein tree in turn, using the Efficient 
Evaluation of Edit Paths (EEEP) method (see Fig. 21.2 and 
Note 7). A subtree prune-and-regraft operation on a tree is 
an edit. A hypothesis of LGT can be represented graphically 
as coordinated set of such edits, or edit path. The number of 
edits in an edit path is the edit path length or edit distance. The 
goal is to find all shortest edit paths that can reconcile each 
observed protein tree with the reference tree.

 2. There exists a single minimal edit distance of zero or greater 
between each protein tree and the reference tree, but there 
may be multiple non-identical edit paths of this length. An edit 
operation that appears in every alternative path is considered 
obligate, and the transfer that it implies must have occurred in 
the evolution of that MRC, given certain assumptions (see Note 8). 
Edit operations that occur in at least one, but not necessarily 
all, alternative paths are termed possible edits. They offer poten-
tial, but not definitive, explanations for the observed history 
of a given MRC. Edits can be of determinate or indeterminate 
direction, depending on whether or not at least one of the line-
ages involved in a given LGT operation can be identified as the 
donor or the recipient (see Note 9).

 3. Obligate and possible edits can be pooled to test hypotheses 
about gene sharing within and between different groups of 
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organisms. For instance, although in our analysis the Aquifex
aeolicus genome did not show a strong affinity for any 
particular branch among Archaea, collectively many transfer 
operations are implied between the Aquifex and archaeal 
lineages.

 1. Genome sequence data can also be obtained from other loca-
tions. Open non-commercial sites include The Institute for 
Genomic Research (http://www.tigr.org) and the U.S. Depart-
ment of Energy Joint Genome Institute (http://jgi.doe.gov).

 2. The choice of parameter settings in GBLOCKS can have a 
dramatic effect on the amount of sequence that is retained 
within a given alignment. In principle, it is essential to elimi-
nate all columns that contain non-homologous residues, 
and desirable as well to remove columns that have a high 
probability of being misaligned. However, overly aggres-
sive settings remove many columns with data from rapidly 
evolving sites, useful for resolving relationships among 
closely related organisms. Since we used WOOF to score 

4. Notes4. Notes
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Fig. 21.2. Reconciling an unrooted protein tree (A) with a rooted reference tree (B) using 
EEEP. One or more subtree pruning and regrafting (SPR) operations (edits) are per-
formed on the reference tree until it becomes topologically consistent with the protein 
tree. Ideally all minimum-length paths to all consistent topologies would be discovered, 
although when very large trees are compared, computational feasibility may require 
that the search space be limited in a manner that does not guarantee a complete set of 
edit paths. In the example shown, four alternative edit paths of length 1, each represented
by a unidirectional arrow, can convert tree (A) into a tree that is topologically congru-
ent with tree (A). The edit operation represented by the dashed arrow in (B) implies a 
donation of genetic material from the ancestor of genome A to the ancestor of genome 
B, yielding tree (C), which is consistent with the inferred protein tree. In this simplified 
example, no edit path is obligate; the donor/recipient pair cannot be uniquely identified 
because the implied lateral transfer implicates either A and B, or C and D.
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sets of alignments of each data set, and since we adopted a 
global alignment approach to the analysis of protein sets, we 
chose GBLOCKS settings that were considerably more con-
servative (thus retaining more columns in the alignment of 
n sequences) than the default parameter settings shown in 
the following.

  Default settings for GBLOCKS:
Minimum number of sequences for a conserved  position: 

n × 0.5 + 1
Minimum number of sequences for a flank position: 

n × 0.85
Maximum number of contiguous non-conserved positions: 

8
Minimum length of a block: 10
Allowed gap positions: None

 3. There is extensive literature on whether it is preferable to 
run a single long or several short Markov chains. Certain 
theoretical distributions such as the “Witch’s Hat” can pro-
duce highly misleading results if multiple short chains are 
used (35), but in separate work we have observed substantial 
evidence for multi-modality of some protein data sets. Given 
the practical limitations on the length of MCMC chains, the 
pragmatic approach of multiple short runs is more likely to 
identify multi-modality than a single long run (32). Also, 
although our calibration runs showed that the chain lengths 
stated in Section 3.3.1 were sufficient for our sub-sampled 
data sets, the question of chain length is by no means closed, 
and we recommend longer runs (e.g., of at least 106 itera-
tions for data sets of size ≤10, and more for larger data sets) 
and more replicates where computationally feasible.

 4. Our chosen convergence diagnostic relies on the stabiliza-
tion of likelihood values from a given Markov chain, and is a 
simple but consistent adaptation of the graphical inspection 
of serial log-likelihood values commonly used in phyloge-
netics. Other, more-sophisticated convergence diagnostics 
have been proposed (36), but it is not clear which among 
these are appropriate to phylogenetic inference.

 5. Reference hypotheses of organismal or genomic relation-
ships can be derived by other approaches. For example, trees 
could be inferred from sequences of trusted single genes 
such as that encoding small-subunit (16S) ribosomal RNA, 
from weighted or unweighted proportions of genes held in 
common (“genome trees”), or from shared physiological or 
morphological characters. Each of these alternatives presents 
difficulties. For example, 16S rDNA exhibits insufficient 
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variability to resolve many closely related strains, whereas 
the interpretation of genome trees remains controversial (6), and 
use of phenetic characters in phylogenetic inference has a 
highly problematic history. For recent comparisons of super-
tree methods see (37) and (38).

 6. The choice and validity of posterior probability thresholds for 
phylogenetic MCMC remains controversial. Several groups 
(39) have presented cases in which bipartition posterior 
probabilities tend to exaggerate the support for topologi-
cal features with higher posterior probability. Such observa-
tions, and the manner in which competing hypotheses are 
evaluated using, e.g., Bayes factors (40), have led to the use 
of thresholds of 0.90 or greater in many published studies. 
In (4) we chose 0.95 because: (1) this threshold requires 
that a given feature be strongly supported in all replicate 
runs; (2) our large data sets allowed the use of a stringent 
threshold while still retaining over 90,000 bipartitions; and 
(3) it corresponds to a minimum Bayes factor (expressed as 
the posterior probability ratio of two competing hypotheses) 
of 0.95/0.05 = 19, which corresponds to “very strong” sup-
port for a given hypothesis (40). The supertree we obtained 
was robust to changes in the PP threshold, with no more 
than 5 of 141 internal nodes differing between thresholds 
of 0.51 and 1.00. The proportion of resolved concordant 
bipartitions was more sensitive to threshold, ranging from 
about 77% at 0.51, to 92% at the maximum threshold 1.00.

 7. EEEP allows unrooted test (in this case, protein) trees to 
be compared with a rooted reference tree (in this case, 
the supertree). This was the most appropriate comparison, 
since the reference tree could be rooted in accordance with 
previous molecular work (41), but the test trees could not 
be rooted without assuming a molecular clock. Two other 
programs, LatTrans (42) and HorizStory (43), require both 
reference and test trees to be rooted. LatTrans is extremely 
fast compared to EEEP and HorizStory (26), but currently 
requires both trees to be completely resolved, which was not 
appropriate to our analysis.

 8. Three fundamental assumptions underlie our inference of 
LGT: (1) that the evolution of these putatively orthologous 
sets of proteins can be described with a tree, (2) that we have 
recovered the correct tree, and (3) that the “true” donor 
taxon was a reasonably close relative of the one implied 
in our analysis. The first of these assumptions can be vio-
lated if some of the sequences in an MRC are not ortholo-
gous, due either to unrecognized (cryptic) paralogy, or to 
inter- or intra-species recombination. Many reasons have 
been documented by which orthologous sequences can yield 



incorrect trees, including but not limited to inappropriateness 
of reconstruction method, rapid or highly variable rates of 
sequence substitution, and violation of sequence stationar-
ity, rate homogeneity, and/or substitution reversibility (12,
44–47). We carried out a battery of statistical tests in (4) to 
assess the impact of some of these issues, but many of these 
potential problems remain open issues. The third assump-
tion relates to density of taxonomic sampling; better sam-
pling will clarify this question for some relationships, but 
other donor lineages may have no extant representatives.

 9. Although some of the limitations and pitfalls of surrogate 
methods have been documented (9, 10, 48), in combina-
tion with a phylogenetic approach such as the one outlined 
herein, these approaches can be valuable in identifying donor 
and recipient lineages. Genes that have been acquired verti-
cally retain, for some time, sequence biases characteristic of 
their donor lineage, and these biases can in favorable cases 
be used to distinguish donor from recipient. Similarly, a line-
age within which most or all extant genomes possess a given 
gene or sequence feature is more likely to be the source than 
is a lineage in which that gene or features is rare.

Cheong Xin Chan, Nicholas Hamilton, Tim Harlow, and Jonathan 
Keith provided vital assistance in developing and executing the 
phylogenetic pipeline described in this chapter. We acknowledge 
the Australian Research Council (CE0348221) and the Austral-
ian Partnership for Advanced Computing for support.
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Chapter 22

Detecting Genetic Recombination

Georg F. Weiller

Abstract

Recombination is the major motor of evolution. While mutations result in gradual changes, recombination 
reshuffles entire functional modules and thus progresses evolution in leaps and bounds. We need to 
identify recombination breakpoints in sequences to understand the evolutionary process, the impact of 
recombination, and to reconstruct the phylogenetic history of genes and genomes. This chapter provides 
a step by step guide for detecting recombination even in large and complex sequence alignments.

Key Words: Recombination; PhylPro; multiple sequence alignment; phylogenetic profile; phylogenetic
correlation; HIV-1; GAG

Genetic recombination is the formation of a new DNA sequence 
from two donor sequences, so that one region of the sequence 
corresponds to one donor and another region to the other donor. 
There are many different mechanisms of genetic recombination, 
including homologous recombination, gene conversion, transpo-
sition, transduction and intron-homing. In some forms only the 
information of a donor is copied, whereas others involve physi-
cal breakage and rejoining of the DNA strand. Recombination 
between the homologous chromosomes is reciprocal, whereas 
most forms of non-homologous recombination are unidirec-
tional. Horizontal or lateral gene transfer is a recombination of 
genetic material from two different species (1), and in many cases 
is mediated by mobile genetic elements such as viruses. Recom-
bination of genetic material from sequences as distantly related as 
plants and vertebrates has been reported (2).

1. Introduction1. Introduction
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Recombination can combine sequences or genes that were 
independently shaped and tested by evolution and therefore forms 
the major motor for evolution. Although evolution through muta-
tion can only adjust individual nucleotides and results in gradual 
changes, evolution through recombination deals with entire func-
tional modules and so progresses in leaps and bounds.

The depiction of the evolutionary process as a phylogenetic 
tree has considerable shortcomings as it ignores genetic recombi-
nation. Recombination hampers current methods of phylogenetic 
reconstruction. Therefore, before a phylogenetic reconstruction 
based on sequences is attempted, the possibility that individual 
sequences are recombinant must be assessed.

In recent years, many methods have been developed to find 
genetic recombination in sequences and a comprehensive list of 
programs for detecting and analyzing recombinant sequences has 
been maintained for many years by David Robertson at http://
bioinf.man.ac.uk/recombination/programs.shtml. The site is 
frequently updated and currently lists 43 programs. Although 
almost all methods require a multiple sequence alignment to find 
recombination breakpoints, some require additional information, 
such as the knowledge of non-recombinant prototype sequences, 
the “true” phylogenetic tree or which sequence is recombinant. 
Rigorous evaluations of many of the major methods have been 
published using simulated (3) or empirical (4) sequence exam-
ples. Some of these programs are easy to use as they require 
few parameters. Other programs are more flexible but require a 
careful choice of parameters. The phylogenetic profile (PhylPro) 
method described below, if correctly used, is extremely sensitive 
and makes no assumptions as to which, if any, sequence is recom-
binant, or where to expect recombination breakpoints. However, 
the method requires much user intervention as it provides a platform 
for data exploration. PhylPro is widely used in recombination 
analyses. This chapter explains how the program can be used, 
even with a large and complex dataset, to detect recombinant 
sequences and recombinant breakpoints.

Details of the phylogenetic profile method are described 
elsewhere (5, 6). Briefly, the method introduces the “phyloge-
netic correlation” measure that quantifies the coherence of the 
sequence interrelationships in two different regions of a multi-
ple alignment. Positions in which sequence relationships in the 
upstream region clearly differ from their downstream counter-
part exhibit low phylogenetic correlations and are likely recom-
bination sites. For each individual sequence in the alignment, the 
phylogenetic correlations are computed at every position using a 
sliding window technique. The plot of the phylogenetic correla-
tions against the sequence positions is termed a “phylogenetic 
profile,” and the profiles of all individual sequences are typically 
superimposed in a single diagram. Such profiles support the 
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identification of individual recombinant sequences as well as 
recombination hot spots.

In the following example, the gag region of HIV-1 has been 
chosen to provide a step-by-step guide to the use of PhylPro. It 
represents a challenging example, since recombinations in HIV-1 
sequences are much more widespread than previously thought 
(4, 6). The dataset contains over 600 sequences, all or most of 
which are likely to be the result of many recombinant events.

 1. Program availability: The PhylPro program and accom-
panying manual can be downloaded free of charge from 
http:// bioinfoserver.rsbs.anu.edu.au/. PhylPro is a MS 
Windows application and requires Windows 95 or above, 
or a Windows emulation software, to run. Install the program 
according to the instructions in the manual.

 2. Data format: PhylPro requires a multiple alignment of nucle-
otide or protein sequences (see Note 1) and accepts NBRF-
PIR, FastA, GDE, and GenBank formats.

 3. Data source: For this example an alignment of the gag region 
of HIV-1 is used. Readers that wish to follow the exam-
ple described below can download the alignment from the 
HIV Sequence Database at http://hiv-web.lanl.gov via the 
“Sequence Database” and “Alignments” links to the 2004 
HIV and SIV alignments. Choose the alignment format 
“FastA” and select “HIV-1/SIVcpz” gag DNA and then 
click “Get alignment.” Download the alignment to a folder 
of your choice and name the file “HIV1GAGDNA.fa” (see
Note 2).

This section describes, step by step, how recombinant sequences 
and recombinant breakpoints can be found using PhylPro. It 
assumes that PhylPro is installed and that the HIV1GAG align-
ment has been downloaded. In the following description, menu 
options are displayed in italics, specifically File:New means select 
the “New” option of the “File” menu. Dialog box names are 
given with the first letter of each word in upper case and their 
options enclosed in single quotes.

2. Materials2. Materials

3. Methods3. Methods
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To analyze sequences in PhylPro the sequences must be first 
imported into the PhylPro database system called VOP (virtual 
object pool).
 1. Start the PhylPro program. Choose the menu option File:

New and select Project. An empty VOP window will 
appear.

 2. To import the alignment choose File:Import sequence. In the 
dialog box that displays, choose ‘File type: FastA (Nuc)’ and 
navigate to the folder containing the file HIV1GAGDNA.fa 
and open it (see Note 3). An information window displays 
that the file contains 614 nucleotide sequences (see Note 4).
Click ‘Import now.’ Some information about the imported 
sequences appears in the project window. Name the project 
by saving the VOP, select File:Save VOP as, and type the 
file name ‘HIV1gag’ in the ‘Save As’ dialog box. The VOP 
window is no longer required and can be closed (by clicking 
the button on the top right of the window).

PhylPro is able to manage many different datasets, differing in 
the sequences it contains, analysis parameters or display options. 
A given sequence can be a member of many datasets without 
physical duplication. Before a phylogenetic profile can be created, 
a dataset containing the sequences must be created.
 1. Use the Dataset:New command to create a new dataset. In the

Compose Set of Nucleotide Sequences dialog box, choose 
‘Select…all sequences’ from the ‘Sequence Pool’ and click ‘To 
set’ to move them to the ‘Sequence Data-Set.’ Click ‘OK’ 
to confirm the creation of a new dataset containing all aligned 
sequences. The sequences are displayed in the Sequence 
View window.

 2. Before exploring the alignment, ensure that the following 
Sequence View Preferences are set: Select View:Preference
(or via the right mouse button) and select ‘Windows: React 
to others,’ ‘Show features’ and ‘Show column usage’, ‘Col-
umns: raw’ and ‘Nuc-colors: by Nucleotide.’ Ensure that 
‘Display in blocks of 10’ and ‘Gray analysis region’ are not 
selected. A different font can also be used if desired. Click 
‘OK’ to close the preferences dialog.

 3. Individual regions of the alignment can be marked. Here 
the different gag proteins are marked. Select View:Feature
to open the ‘FeatureView.’ An empty window shows that 
there are no features defined. Select Edit:Add Feature and 
enter a range ‘From’ 1 ‘to’ 558, with a ‘Text’ of P17 to indi-
cate that this region encodes the P17 protein of gag. Click 
‘OK’ to confirm. Repeat this process for P24 (559-1278), 
P7 (1366-1551), and P6 (1555-1947), choosing different 
colors for each (see Note 5). Close the ‘FeatureView.’ The 

3.1. Creating 
a PhylPro Project
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features are now displayed above the alignment at the top 
of the Sequence View. Use both scroll bars to examine the 
entire alignment.

 4. The downloaded alignment is a subset of a bigger, multiple 
sequence alignment and contains columns that consist only 
of gap characters. Highly gapped columns are not helpful 
for further analysis and will be excluded. The ‘Columns’ row 
above the alignment indicates the alignment positions used 
for analysis. Individual columns can be chosen, in several ways, 
and excluded or included in the analysis. Select Columns:Select 
special:Missing chars and enter ‘Minimum occurrence: 50’ to 
select all columns in which more than 50 sequences have a 
gap (see Note 6). The selected columns are now grayed in 
the Columns row. Then select Columns:Exclude selection. The 
excluded columns will now have a minus sign in the ‘Col-
umns’ row above the aligned sequences, and will not be used 
in further analyses. To also exclude them from the Sequence 
View, open the Sequence View Preferences (View:Preferences)
and select Columns:Included.

 1. Before generating the first phylogenetic profile ensure that 
the default Profile Parameters are set as follows: select 
DataSet:Prof Parameter and in the dialog set ‘Distance 
scores: Score nucleic acids,’ ‘Analysis column: Variable,’ 
‘Limit sliding window by: Comparisons 40,’ ‘Correlation 
measure: Correlation,’ and click ‘Save graph between 
sessions’ to avoid having to recalculate the phylogenetic 
profile when viewing this dataset at a later stage. Click ‘OK’ 
to generate the profile.

 2. Before exploring the profile (Fig. 22.1A) ensure that the 
following Profile View Preferences are set: select View:
Preferences. In the Profile View Preferences dialog select 
‘Window: React to others,’ ‘Window: Show features,’ 
‘Graph: Show inform. columns only,’ ‘Smooth: 1,’ ‘Show 
location: Cross hair,’ ‘Snap: to minimum,’ and ‘Summary 
line: Show.’ Click ‘OK.’ Save the dataset by selecting Dataset:
Save As and specify ‘All40C’ in the ‘Object:’ field of the 
Save Object dialog. The name indicates that this dataset 
contains all sequences and a phylogenetic profile using a 
window of 40 comparisons.

This first profile is not ideal for finding recombinants, but gives a 
first view of the data variability. The graph is overwhelming, show-
ing hundreds of low phylogenetic correlation minima. The graph 
is not uniform over the entire alignment and some areas, for exam-
ple the junction of P17 and P24, and a region in the last half of 
P24, have particularly low phylogenetic correlation as can be seen 

3.3. Creating the First 
Phylogenetic Profile
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on the purple summary line (bold, dark line in Fig. 22.1A), which 
displays the average phylogenetic correlation of all sequences. The 
low phylogenetic correlations show that sequence relationships 
change very frequently in the chosen window size, indicating that 
recombinations are very frequent in the dataset. By double clicking 

Fig. 22.1. Phylogenetic Profiles of the HIV-1 GAG region. All graphs are produced using PhylPro. (A) Dataset All40C. The 
bold dark line gives the average phylogenetic correlation of all sequences. Sequence A1C.TZ.97.97 is highlighted with 
a thin dark line. (B) Dataset M40C. Sequence A1C.TZ.97.97 is highlighted. (C) Dataset M30D. Sequence A1C.TZ.97.97 
is highlighted. (D) Dataset M30D with a region of the profile selected. (E) Dataset M275+1. Sequence 08_BC.CN.98 is 
highlighted. (F) Dataset M30D. Sequence 08_BC.CN.98 is highlighted. See text for further details.
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on various areas in the graph a position in a sequence is selected 
and its phylogenetic profile is displayed in red (thin, dark line in 
Fig. 22.1), but rather than exploring this profile further we will cre-
ate a new optimized profile. To improve the recombination signal, 
distantly related sequences will be removed and the analysis window 
enlarged for profile calculation.

If a sequence alignment contains a small group of sequences that 
is more distantly related than the in-group, then recombinations 
between in-group sequences do not show up clearly since the 
relationship between in-group sequences will remain relatively 
close regardless of the recombination event. To enhance the sig-
nal for in-group sequences the out-group has to be removed.
 1. To identify the more distantly related sequences, go to the 

Sequence View window and select Sequences:Compare all.
In the dialog, select only ‘Untypical sequences.’ Click ‘OK.’ 
This calculates the distances between all sequences and 
shows the sum of distances for every sequence. The top 29 
sequences in the display window are clearly more divergent, 
with the sums of differences ranging from c. 300000 to 
c. 230000. The next highest sum of differences is much 
lower (c. 130000, sequence D.ZA.85.R214) (see Note 7).

 2. Create a new dataset that does not include the 29 out-group 
sequences. A convenient way to create a new dataset based on 
the initial dataset, and so keep the column and feature defini-
tions, is to duplicate the existing set. Select Dataset:Duplicate
and then change the sequence composition of the newly created 
dataset by selecting Sequences:Add/Compose. Highlight the last 
29 sequences of the ‘Sequence Dataset’ starting with sequence 
N.CM.97.YBF1 and click ‘To pool.’ Click ‘OK’ to modify the 
dataset (see Note 8). The text window displaying the out-group 
sequences is no longer required and can be closed.

 3. Create a new profile using the same parameters as in Section
3.3.1. Save the new dataset, which also includes the profile 
(see Section 3.3.2). Here the name M40C is chosen to indi-
cate that this dataset contains the group M sequences using 
a window of 40 comparisons.

Before examining the new profile (Fig. 22.1B), create a third 
profile by changing the window size (see Note 9).
 1. Duplicate the M40C dataset (see Section 3.5.2).
 2. Change the profile parameters of the new dataset. Select 

Dataset:Profile parameter, and set the parameter as in Section 
3.3.1 except for ‘Limit sliding window by: Differences 30.’ 
Click ‘OK.’ A new profile is generated (Fig. 22.1C).

 3. Save the dataset (see Section 3.3.1) with the name M30D, 
indicating the analysis window is 30 differences wide.

3.5. Refinement 
of the Sequence Set
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3.6. Refinement of the 
Profile Parameters



478 Weiller

To see the effect that sequence removal and a change in the win-
dow size have on the profile, compare the three profiles.
 1. Ensure that all three datasets are open with only the Pro-

file View of each displayed. Minimise or close the Sequence 
Views of the datasets as well as any other open windows.

 2. Arrange the windows by selecting Window:Tile horizontal.
 3. Ensure the following View Parameters in each of the Profile 

Views (right click in the profile and select Preferences) are 
selected: ‘Window: React to others,’ ‘Window: Show fea-
tures,’ ‘Graph: Show inform. columns only,’ ‘Smooth: 1,’ 
‘Show location: Cross hair,’ and ‘Snap: to minimum.’ Make 
sure ‘Summary line: Show’ is not checked. The three profiles 
are now easily compared.

 4. By double clicking close to a prominent trough in one 
profile, the profile for this sequence will be highlighted, a 
crosshair will be displayed at the profile minimum, and the 
corresponding sequence and position will be shown in all 
windows containing the sequence. For example, if the lowest 
point in profile M30D is selected (i.e., the most prominent 
recombination site close to informative position 335),
the recombination is also apparent in the profile for M40C, but 
is not prominent in the All40C profile (Fig. 22.1A–C).

The M30D profile will be used to identify the most prominent 
recombination breakpoints.
 1. Close all windows except the M30D Sequence View and 

Profile View windows. Select View:Alignment if it is not cur-
rently displayed. Arrange the windows by selecting Window:
Tile horizontal.

 2. In the Sequence View right click, select Preferences and then 
‘Columns: informative’ while keeping the other settings set 
as in Section 3.2.2 (see Note 10). Click ‘OK.’

 3. In the Profile View, double clicking on any of the troughs will 
select the sequence. On double clicking the lowest trough 
(c. position 335), the profile for this sequence will be highlighted 
and a crosshair will be displayed at the profile minimum. 
In the Sequence View the selected sequence becomes visible 
and its acronym A1C.TZ.97.97 is grayed, the sequence posi-
tion corresponding to the crosshair position of the Profile 
View is highlighted with a yellow background and the selected 
column is indicated by a grayed ‘+’ sign.

 4. By double clicking the four most predominant profile troughs, 
the following recombinant sequences and their approximate 
recombination site (informative) can be identified: A1C.
TZ.97.97 c. position 334, A1C.SE.96.SE position 334, A1C.
RW.92.92 position 836, and 02C.BE.93.VI position 642.

3.7. Comparing 
Profiles
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  The similarity of the profiles for the sequences A1C.TZ.97.97 
and A1C.SE.96.SE suggests that both are descended from a 
common recombinant sequence.

 5. To further examine any of the selected (crosshair) recombi-
nation breakpoints, select View:Relationships. A text window 
will now describe the selected sequence and position, and 
the sequences most closely related are given for the left and 
right analysis window. This is a convenient way to find the 
potential recombination donor sequences.

 6. To see the area of analysis (i.e., the window size) in the Pro-
file View select View:Preferences and select ‘Show location: 
Analysis region.’ Click ‘OK.’ Double clicking anywhere in 
the profile will highlight the extent to which any of the other 
sequences were involved in the calculation of the sequence 
location indicated by the crosshair. Note that the extent of 
the analysis region is different for every sequence because this 
dataset uses an analysis window that is limited by sequence 
differences. To see the area of analysis in the Sequence View 
select ‘Gray analysis region’ in the Sequence View Prefer-
ences dialog box. Double clicking in the profile will now 
not only mark the corresponding point in the Sequence 
View (yellow highlight) but will also mark the portion of the 
sequences used for analysis (i.e., the analysis window) with a 
gray background (Fig. 22.2, grayscale only).

After the most predominant recombinants have been identified it is 
useful to remove these sequences from the dataset as the detection 
of recombination sites in other sequences is impeded by the pres-
ence of strong recombinants in the background sequence set.
 1. To select sequences for removal, single sequences can be 

highlighted in the Sequence View or Profile View, or 
groups of sequences can be highlighted in the acronym 
column of the Sequence View, or more conveniently a 
region of the Profile View can be selected using ‘click’ and 
‘drag.’ With this latter method, a whole group of sequences 
with low phylogenetic correlation can be selected at once 
(Fig. 22.1D). In Sequence View, the number of selected 
sequences will be displayed in the lower left corner and 
the sequences acronyms are grayed. Select Sequences:Remove
and generate a new profile.

 2. It is often possible through consecutive removal of sequences 
with low phylogenetic correlation to arrive at a dataset of 
sequences with a consistently high phylogenetic profile. 
When previously removed sequences are reintroduced into 
the dataset, their recombination sites become apparent 
(see Note 11). Fig. 22.1E shows a profile consisting only 
of the 275 sequences with a high phylogenetic correlation 
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plus sequence 08_BC.CN.98. The two recombination junc-
tions of this sequence become apparent in this profile, but 
could not have been detected in profile M30D (Fig. 22.1F).

 3. Save the Project (File:Save VOP) and put the kettle on.

 1. To produce a multiple alignment of sequences with extended 
recombination is potentially complicated as some alignment 
methods, such as CLUSTALW (7), require a guide-tree. 
However, it may be difficult to get a reliable guide-tree from 
recombinant sequences. Other alignment methods such as 
DIALIGN (8) or methods that use hidden Markov models 
(9, 10) may be more advantageous. As some recombinant 
sequences may have regions that are not homologous to 
other sequences, some manual editing of the alignments 
may be necessary.

 2. PhylPro expects text files to adhere to the Windows conven-
tion, which terminates lines with a CR (ascii 13) + LF (ascii 
10) combination. Occasionally, downloaded sequences use 
either the Macintosh or Linux convention, which terminates 
lines with a CR or LF only. In these cases the file needs to 
be converted. Convert the file by, for example, opening it in 
MS WordPad or Word and saving it as a text file under the 
same name.

 3. PhylPro assumes that FastA files have an extension .fa and 
displays only these files. To also display files that have a dif-
ferent naming convention write *.* in the file name field and 
press ‘return.’

 4. PhylPro has analyzed the file and found 614 nucleotide 
sequences. If the expected numbers of sequences have not 
been found, a problem with the file format is most likely the 
trouble (see Note 2).

 5. Positions provided are correct for the current alignment 
(i.e., 2004 HIV and SIV alignments). Positions in subse-
quent alignments may change as additional sequences may 
require the introduction of additional gaps.

 6. The number entered is not crucial in this example as most 
alignment columns have either a very high or a very low 
number of gaps; however, extensive gap regions will hamper 
the interpretation of phylogenetic profiles. The Sequence 
View should be used as a guide as to which positions or 
sequences are excluded from the analysis. For very large 

4. Notes4. Notes
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alignments it may be helpful to temporarily set the font size 
to 1 point.

 7. Readers familiar with HIV nomenclature will know that 
HIV-1 lineages were originally put into the groups M for 
main, O for outlier and N for non-M and non-O. For fur-
ther information on HIV nomenclature see (11, 12). The 
top 29 sequences are in the O and N groups, whereas the 
remaining 585 sequences belong to group M. The removal 
of sequences other than M will enhance the resolution of 
recombination involving group M subtype sequences. 
Out-group sequences cannot be removed if recombination 
involving out-group lineages is to be examined.

 8. It is fortuitous that the 29 out-group sequences are grouped 
on the bottom of the alignment, otherwise the sequence 
information presented in the Compare All window can be 
used to find and remove the sequences individually.

 9. The choice of window size is not easy. If few recombina-
tion sites are expected, the windows can be made sufficiently 
large. If more than one recombination site is within a win-
dow, the phylogenetic correlation calculation will be impeded 
and smaller windows should be chosen. However, the win-
dow size must be big enough to gather enough sequence 
differences between any two sequences if a reliable measure 
of sequence similarity is to be obtained. As one sequence is 
compared with many other sequences, the ideal window size 
may differ for each sequence with which the test sequence 
is compared. Therefore, PhylPro can use a different window
size for every sequence. When the option ‘Limit sliding 
window by: Differences’ is chosen, the window for every 
sequence will be set to the size required to find the specified 
differences. We have done this in this example where the 
window was set to 30 differences. The remaining options 
are to set the window size to a fixed number of informative 
positions (by comparison) or to use a maximum window size 
(unlimited) whereby the window encompasses the whole 
alignment. It is important to note that the phylogenetic cor-
relations near the alignment boundaries are typically low, as 
one of the analysis windows becomes too small. The low 
correlation toward the end of the sequence must therefore 
be ignored.

10. PhylPro has three ways to refer to sequence positions. Raw
positions refer to sequence positions in the original imported 
alignment file. Included positions ignore alignment col-
umns that have been excluded from the analysis. Informa-
tive positions are the positions that are useful in calculating 
phylogenetic profiles. These are either variable positions or 
parsimoniously informative positions as set in the Profile 



 Detecting Recombination 483

Parameter dialog box. Parsimoniously informative positions 
are those with at least two of each of two different nucle-
otides. The Profile View can display raw or informative posi-
tions, whereas the Sequence View can display raw, included, 
or informative positions.

11. Clear-cut recombinations will show up by deep v-shaped 
troughs in an otherwise relatively high phylogenetic cor-
relation. However, there will always be borderline cases. 
If a dataset would consist only of one or a small number 
of recombinant sequences, together with a set of non-
recombinant prototype sequences, determination of recom-
bination sites would be easy. However, such circumstances 
are rare. In reality, all sequences are the product of a plethora 
of recombinations involving donors, which are themselves 
recombinant. Sequence comparisons such as done with 
PhylPro will only be able to find sufficiently recent recombi-
nation sites involving sufficiently different donor sequences. 
PhylPro makes no attempt to assess the statistical significance 
of a recombination event. Rather, it tries to provide the user 
with the available sequence information.
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Chapter 23

Inferring Patterns of Migration

Paul M.E. Bunje and Thierry Wirth

Abstract

The historical movement of organisms, whether recent or in the distant past, forms a central aspect of 
evolutionary studies. Inferring patterns of migration can be difficult and requires reliance on a large suite 
of bioinformatic tools. As it is primarily the movement of groups of related individuals or populations 
that are of interest, population genetic and phylogeographic methods form the core of tools used to 
decipher migration patterns. Following a description of these tools, we discuss the most critical—and 
potentially most difficult—aspect of these studies: the inference process used. Designing a study, 
determining which data to collect, how to analyze the data, and how to coordinate these results into a 
coherent narrative are all a part of this inference process. Furthermore, using different types of data (e.g., 
genotypic and DNA sequence) from different types of sources (direct, or from the organisms of interest; 
and indirect, from symbiotic organisms) produces a powerful suite of techniques that are used to infer 
patterns of migration.

Key words: Migration, inference process, population genetics, indirect evidence, genotypic data, 
DNA sequence analysis, molecular evolution.

Determining the migratory history of organisms and ongoing 
patterns of migration requires a complex inference process that 
employs several different analytical techniques. Most contem-
porary studies of migration use genetic data to infer patterns 
since direct observation of migration (e.g., tagging and track-
ing) is often difficult or impossible. When beginning a study to 
elucidate patterns of migration, it is critical that an appropriate 
strategy of data collection, data analysis, and interpretation is 
followed. This necessitates that any investigation begin with a 
detailed plan:

1. Introduction1. Introduction
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 1. Identify the hypothesis being tested.
 2. Determine the geographic scope of the population(s) or spe-

cies being investigated.
 3. Identify the type of genetic data to be used.
 4. Conduct a preliminary sample across the geographic range 

using several genetic markers.
 5. Use the pilot study to determine the appropriate genetic 

marker(s) and density of geographic sampling required to 
evaluate the hypothesis.

 6. Collect samples for analysis.
 7. Collect genetic data from samples.
 8. Analyze the data using appropriate statistical techniques.
 9. Combine the various statistical analyses and data types into 

a logical interpretive framework. At this point, ancillary data 
and/or information can be used to improve the inference of 
migration pattern.

Although we discuss how these methods are used for inferring 
patterns of migration among related populations, this process can 
be easily modified to answer many other questions of intra-specific
geographic distribution.

A thorough understanding of the life history and ecology of the 
organism(s) under investigation is critical to an appropriately 
designed study. Some aspects of an organism’s biology that are 
particularly germane to patterns of migration are vagility (see
Note 1), fecundity, territoriality, breeding behavior, dispersal 
ability, and type of propagule/offspring. This knowledge is 
critical in determining an appropriate hypothesis for migra-
tion pattern. For example, an organism with wind-borne spore 
dispersal can be hypothesized to have migratory patterns that 
coincide with dominant wind patterns. If using a symbiont to 
trace migration patterns of its host, the mode of transmission, 
rate of recombination, and mutation rate are also critical. Fur-
thermore, knowledge of the demographic structure derived 
from previous studies of demography or inferred from other 
biological characteristics is important for designing the pre-
liminary sampling scheme.

An appropriately designed sampling scheme is critical to obtaining 
a sound estimate of migration patterns. While designing the 
sampling scheme, continually analyze preliminary data to determine

2. Data and 
Materials
2. Data and 
Materials

2.1. Organism(s) 
Under Investigation
2.1. Organism(s) 
Under Investigation

2.2. Sampling Scheme2.2. Sampling Scheme
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both where and how intensively to sample, as well as to identify 
appropriate genetic markers (see the following).

 1. Determine the geographic range of interest and identify all 
known or putative populations of study organism within 
that area.

 2. Determine the scale at which migration patterns are to be 
determined (i.e., at how finely resolved a geographic scale 
the hypothesized movements are to be observed).

 3. Collect organisms for a preliminary analysis (pilot study). 
To do this, collect 5–10 samples/individuals from ~10% of 
the total populations expected in the full study. Collect from 
populations in several clumps distributed around the entire 
range. In other words, collect several populations that are 
at the smallest possible distance from each other. Collect 
these groups of populations from all areas of the study area, 
including the center (Fig. 23.1).

 4. Perform preliminary analyses on the genetic markers of 
choice (see the following). Using these preliminary  analyses,
it should be possible to predict how many populations are 

Fig. 23.1. Hypothetical preliminary sampling scheme. Suppose the organism of interest 
inhabits a range delimited by the dashed line. Populations can be found throughout the 
gray shaded area of this range. In the full study, it is expected that ~80 populations will 
be sampled. Sampling 8–10 of these populations for a preliminary study, demarcated 
by the crosses, in a pattern such as that shown will help to identify regions that need 
to be sampled more or less densely, as well as the distance between populations that 
should be sampled in the full study.
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needed to provide a statistically significant estimation of 
migration patterns. This stage is also where the appropri-
ate level of genetic variation and/or the appropriate genetic 
marker can be identified, based on how the preliminary 
genetic variation appears to be distributed in space.

 5. Using these preliminary data, perform a power analysis to 
determine how many samples per population are necessary 
to confidently assess the amount of genetic diversity present 
(1, 2). This can be done by performing an ANOVA on the 
genetic variation present in each population and estimating 
β to determine how many samples per population are nec-
essary to define each population as statistically distinct. As 
neighboring populations are expected to be similar or identi-
cal genetically, it is appropriate to perform this power analy-
sis between populations that are approximately the average 
distance apart of all populations. Importantly, this step is 
not meant to determine how populations are related to each 
other, simply to determine how many samples are necessary 
to capture most of the existing genetic diversity.

 6. Collect the determined number of samples from populations 
that are distributed across the range, being sure to collect from 
all possible areas but collecting more populations in areas that 
are hypothesized to be especially interesting. Coalescent theory 
predicts that between 20 and 50 individuals per population will 
capture >95% of haplotype diversity for most organisms (1).
Additionally, distribute the sampling effort across the study area 
so as to sample as much genetic diversity as possible, avoiding 
sampling populations that are too close together.

 7. Continually analyze the data as it is collected, thus identify-
ing geographic areas that have more genetic variation than 
average. Collect more populations and/or samples from 
these areas as they are identified.

There are two general types of data, those representing haplotypic 
sequence of particular genetic loci (in haploid or diploid organ-
isms/genomes) or those representing genotypic data describing 
allelic variation in one or more loci (which may be either haploid 
or diploid). We first discuss DNA sequence data and then the 
several most common types of genotypic data. These two types of 
data require different, though often analogous, analytical meth-
ods relating to their biological properties.

Common to both types of data, it is critical to have data that 
exhibit an appropriate amount of genetic variation. This means 
that the DNA sequence or genotypes must have enough variabil-
ity (either in haplotype or allelic diversity) to provide a statisti-
cally significant result and must not be so variable as to introduce 
either excess homoplasy (see Note 1), in the case of sequence data, 

2.3. Types of Data2.3. Types of Data
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or too little common allelic variation, in the case of genotypes. 
The amount of variability can only be determined through prelimi-
nary analysis of the study organism, the geographic study area, 
and several potentially useful loci (see Notes 2–5 for caveats to be 
considered when identifying appropriate genetic loci).
 1. Plastid DNA. DNA sequences from mitochondrial and chlo-

roplast genomes are commonly used to study migration pat-
terns. This is due to the relatively fast rate of evolution of 
mitochondria in animals and fungi and chloroplast genomes 
in plants (plant mitogenomes tend to evolve slowly), the uni-
parental inheritance mode (obviating allelic variation), and the 
intracellular abundance of these organelles. To obtain these 
data, whole genomic DNA must be isolated from the organ-
isms of interest using one of several available methods, such 
as phenol-chloroform and salt-based extractions, or commer-
cially available kits. Amplification by PCR using primers spe-
cific to the target sequence then proceeds. Several universal 
primers have been developed that target highly variable loci, 
including the mitochondrial control region, cytochrome b, 
and cytochrome c oxidase subunit I in animals and plants. 
Alternatively, it may be necessary to develop new primers for 
a particular group or for a locus that demonstrates the appro-
priate amount of genetic variation. Finally, direct sequencing 
of purified PCR product results in haplotypes ready for align-
ment and analysis. These haplotypes, like those from nuclear 
DNA, can be used either as DNA sequence data or as haploid 
genotypes in most methods described in the following.

 2. Nuclear DNA. Using nuclear DNA sequences for estimat-
ing migration history is hindered by the generally slow rate 
of mutation in the nuclear genome. Nonetheless, some loci 
with relatively fast rates of nucleotide substitution have been 
used successfully, notable the internal transcribed spacer 
regions of the ribosomal DNA locus and intronic regions 
of some genes. The procedure for obtaining haplotype 
sequence of these genes (presuming negligible allelic varia-
tion) is the same as that in the preceding, although universal 
primers are less likely to be available.

 3. Single Nucleotide Polymorphisms. Single base-pair differ-
ences between haplotypes (e.g., from different chromosomes), 
called single nucleotide polymorphisms (SNPs), represent the 
most common form of genetic diversity in model organisms 
whose whole genomes have been sequenced, and tend to have 
a moderate mutation rate of 10−8–10−9/my (3). For non-model 
organisms, SNPs can be identified by either comparing homo-
logous loci from genetic databases or by sequencing anonymous 
loci from many individuals. SNPs can be identified in sequence 
chromatograms using programs (Table 23.1) such as Phred 
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and Phrap (4). SNPs can then be analyzed either by resolu-
tion into haplotypes using Bayesian statistics in PHASE (5) or 
Markov chain Monte Carlo analysis (6) or through population 
genetic and coalescent methods. Importantly, when perform-
ing these analyses, the SNP data must be corrected for ascer-
tainment bias (6), that is:
a. Define the minimum frequency of variability among 

samples that constitutes a SNP.
b. Sequence all loci in either some individuals or all indi-

viduals to identify variable sites.
c. Correct for ascertainment strategy. Specifically, if a limited 

subset of individuals (a panel) is used to identify SNPs, 
a correction factor must be used that accounts for the 
missing rare SNPs, many of which may be represented in 
recently migrated individuals (3). LAMARC can perform 
such analyses while correcting for ascertainment bias.

 4. Microsatellites. Microsatellites are codominant markers (see
Note 1) consisting of short repeat elements (generally tan-
dem or triplet repeats). Due to their high mutation rates, 
ca. 10−4/my (7), frequency in the genome, and ease of iden-
tification, they have become especially popular in studies of 
migration. Despite their popularity, little is known about 
the evolutionary mechanisms that govern their diversity, 
making it difficult to construct genealogical inferences from 
them (7). Ideally, >5 unlinked microsatellite loci should be 
used for intra-specific evolutionary research (see Note 3). If 
appropriate microsatellite primers are available for a given 
study organism, then genotyping can begin with step i. 
Otherwise, they can be obtained as follows:
a. Digest genomic DNA (e.g., using MboI or MseI) and 

size fraction the product on an agarose gel, purifying out 
500–1,000 bp fragments.

b. Ligate linker fragments of known sequence to these 
products and test quality via PCR.

c. Enrich the concentration of fragments with linkers via PCR.
d. Using biotinilated probes of di- or tri-nucleotide repeats 

(i.e., CA, CT, etc. in oligonucleotides containing ~10 
repeats), hybridize the enriched fragments from (c) to 
the probes and isolate only those fragments that hybrid-
ize to the probes (e.g., using magnetic beads).

e. Test for the presence of microsatellite repeats in the frag-
ments from (d) via PCR.

f. Subclone the PCR products and identify sequences via 
PCR and cycle sequencing of the cloned products.
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g. Design primers for loci that have (close to) perfect repeat 
stretches of >10 repeats.

h. Screen the microsatellite loci designed in (g) from several 
populations in the study organism to identify microsatel-
lites with variation.

i. PCR several good microsatellites from all samples using 
the primers identified in (8), one of which is fluorescently 
labeled.

j. Perform gel electrophoresis and scoring on an automatic 
genotyping detection system.

 5. Amplified Fragment Length Polymorphisms. Amplified frag-
ment length polymorphisms (AFLPs) are dominant mark-
ers derived from two older methods (restriction fragment 
length polymorphisms and randomly amplified polymor-
phic DNA). This type of data is relatively inexpensive to 
obtain and quickly results in large numbers of analyzed loci 
(hundreds to thousands) whose mutation rates depend on 
the restriction enzymes chosen and so can be tailored to a 
given question and organism (8). They can be obtained as 
follows:
a. Digest genomic DNA using two different restriction 

enzymes (e.g., EcoRI and MseI).
b. Ligate adaptors of known sequence to the digested 

DNA.
c. Preamplify the fragments via PCR using primers that 

complement the sequence made by the adaptor plus the 
enzyme recognition sequence and a single additional 
base.

d. Selectively amplify these fragments via PCR using primers 
that correspond to those used in (c) plus two additional 
bases. One of these two primers (usually the one contain-
ing the longer restriction enzyme recognition sequence) 
should be fluorescently labeled.

e. Perform gel electrophoresis and scoring on an automatic 
genotyping detection system.

There are several other types of genotypic data that are still in 
use, although their popularity is waning. These include restric-
tion fragment length polymorphisms (RFLP), randomly ampli-
fied polymorphic DNA (RAPD), single-stranded conformation 
polymorphism (SSCP), and allozymes (7). All of these data can 
be analyzed using the methods outlined below in a fashion analo-
gous to microsatellites or AFLPs.

2.3.6. Other Data Types2.3.6. Other Data Types



494 Bunje and Wirth

The F-statistics of Wright (1965) describe the proportion of 
genetic variation in a sample that can be explained by defined sub-
samples (9). The most common index, Fst, estimates how much 
genetic variation is accounted for by differences within popula-
tions versus differences between populations. This operates as an 
estimate of the amount of divergence (or alternatively cohesion) 
among populations. It can be estimated from genotypic and hap-
lotypic data (often referred to as Fst for haplotypic data such as 
mtDNA sequences). To estimate Fst, genetic data from individuals 
are assigned to one or more populations and then the variance in 
allele frequency among the various sub-populations is estimated 
using one of several models (10). These models are generally 
equivalent and can be implemented in most population genetics 
software. Rst is a related statistic that explicitly employs a stepwise 
mutation model and is appropriate for analyzing microsatellite 
evolution. Under certain assumptions, Fst can be used to infer rates 
of symmetrical migration between equally sized populations (11).

These two estimates of genetic diversity for DNA sequence were 
developed by Nei (12). They provide a general estimate of genetic 
diversity at both the nucleotide level and the gene-locus level and 
can be estimated by most population genetics software packages. 
Nucleotide diversity (p) is the probability that two randomly cho-
sen homologous nucleotides from a pool of haplotypes are differ-
ent. Haplotype diversity (H) is the probability that two randomly 
chosen haplotypes from a pool are different, and is analogous to 
expected heterozygosity for genotypic data. Low values of p and 
H in a population could be the result of recent colonization or 
other bottleneck-like events.

Heterozygosity, derived from the Hardy-Weinberg (H-W) equation, 
can be calculated for any genotypic data, including nuclear sequences 
in which both alleles are known for given individuals. By calculating 
expected and observed heterozygosity (HE and HO, respectively), 
which can be done by most population genetics software, devia-
tions from H-W equilibrium can be identified statistically. One of 
the most commonly observed causes for deviation from H-W equi-
librium within a population is migration. Another case of deviation 
is the so-called Wahlund effect in which a deficit of heterozygotes is 
observed as the result of a mixture of populations within a sample.

For genotypic data, a simple count of the number of alleles per 
locus in a sample provides an estimate of the pool of genetic diver-
sity present. This estimate should be statistically verified by boot-
strapping the total samples from each population to a common 
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number of samples (13) or via rarefaction (14). Populations that 
resulted from a recent colonization event generally have much lower 
allelic richness than the source population(s). Ongoing migration 
between established populations can increase allelic richness by 
exchanging novel alleles that have evolved in different localities. 
As a general rule, the more alleles shared between populations, the 
more gene flow (viz. migration) is occurring between them.

Theta is a classic population parameter than can be effectively used 
to estimate migration rates between populations. Theta is calculated 
as Q = 4Nem for diploid populations and Q = 2Nem for haploid popu-
lations, where Ne is the effective population size and m is the muta-
tion rate of the locus being studied. There are several methods for 
estimating Q based on either homozygosity, variance in the number 
of segregating sites, the relationship between number of alleles and 
sample size, and the estimated number of pairwise differences in a 
population (15). This quantity is particularly useful since the value of 
4Nem, where m is the migration rate between population pairs, can 
be estimated using a coalescent approach (see the following). There-
fore, if an estimate for µ is available, migration rate between diploid 
populations can be estimated simply as m = (4Nem)m/Q.

Analysis of molecular variance (AMOVA) is an analysis of vari-
ance method for describing the population structure of genetic 
diversity (16). By first defining populations, then grouping those 
populations into a reasonable structure (i.e., to test geographic 
regions and relationships between them), AMOVA partitions the 
genetic variance within populations, within groups of popula-
tions, and between groups of populations. The covariance com-
ponents of these partitions are then used to calculate the fixation 
indices described in the preceding. An AMOVA can be performed 
in Arlequin (15). It is useful for inferring migration patterns by 
generating estimates of which groups of populations (or which 
geographic areas) are more or less integrated genetically. Low 
variance components between populations or areas indicate a lack 
of gene flow between them.

Coalescent theory allows an estimate of the statistical distribu-
tion of branch lengths in genealogies described by heritable units 
such as chromosomes or genes (but see Note 5). Taking into 
account variation in life history parameters, the temporal and 
demographic pattern of coalescence of extant genes into their 
hierarchically inclusive ancestors can be estimated, thus providing 
a picture of population changes through time.

Using coalescent theory, Beerli and Felsenstein (2001) have devel-
oped a model that estimates, via Metropolis-Hastings Monte Carlo
simulation, the maximum likelihood value of the quantity 4Nem,
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where Ne is the effective population size and m is the migration 
rate (11). This method assumes a known mutation rate at each 
locus, which is what relates this method to estimates of theta 
(see the preceding). As a result, with an estimate of mutation 
rate (p) and either Ne or Q, asymmetric (or symmetric) migration 
rates between multiple populations of any size can be estimated. 
This method is implemented in the program MIGRATE (also 
LAMARC). Similar methods for estimating 4Nem and 2 m are 
implemented in GENETREE and MDIV.

Using the pairwise mismatch distribution suggested by Rogers 
and Harpending (17), one can identify whether a group of 
related haplotypes is the likely result of recent population expan-
sion (18), as may result from range expansion, colonization, or 
extremely asymmetric migration between populations. Slatkin 
and Hudson (18) have shown that the distribution of pairwise 
differences between haplotypes in a sample will be a unimodal 
Poisson-like distribution if the haplotypes are the result of expo-
nential population growth, whereas a multimodal distribution is 
typical of stable population sizes, which may result from stable 
or no migration between populations. Coalescent theory allows 
one to calculate the value t = m – (v – m)1/2, where m is the mean 
of the normal mismatch distribution and v is the variance (15).
Since t = 2 mt, where u is mutation rate, and t is time, the onset of 
a rapid expansion can be estimated. This method is implemented 
in Arlequin and DnaSP.

Coalescent theory allows for the estimation of when in the past 
various haplotypes (or haplotypes inferred from genotypic data) 
last shared a common ancestor. Lineage through time (LTT) 
plots display the relative age of these coalescent events as they 
accumulate in a species, clade, or population (19). LTT plots can 
be used on individual populations to determine when in the past 
a notable change in the rate of lineage accumulation occurred. 
Assuming a constant mutation rate, these changes are likely to 
represent the time of changes in migration rate or other related 
demographic changes (20). LTT plots can be created using Ape 
and GENIE (21).

The LTT plots described above can be used to explicitly estimate 
changes in demographic parameters through time by the use of 
the derived skyline plot (22). Taking into account error in phy-
logeny and mutation rates as well as the possibility of multiple 
coalescent events occurring simultaneously, the generalized sky-
line plot can estimate changes in population size through time by 
accounting for variance in the rate of coalescent events for a given 
set of (inferred) haplotypes (23). As with LTT plots, these para-
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meters are particularly useful when inferring patterns and timing 
of migration events. Generalized skyline plots can be made using 
GENIE, PAL (24), and Ape.

The recent interest in applying Bayesian inference to biological 
statistics has also resulted in numerous Bayesian methods for esti-
mating population genetic parameters such as those described in 
the preceding. Software that can estimate such parameters in a 
Bayesian framework includes Hickory (25), BEAST (26), BayesAss
(27), and DMLE+ (28).

One of the most commonly used Bayesian applications is the 
program Structure (29). Structure allows assignment of indi-
viduals to populations based on multiple loci of genotypic data, 
though haplotypic data such as those from asexual organisms 
can also be used in a modified form (30). Most relevant for 
migration inference, Structure assigns individuals and loci to 
source populations in a probabilistic way such that introgressed 
individuals that result from immigration are readily apparent 
(Fig. 23.2).

In addition to the methods designed expressly for genetic data 
outlined in the preceding, traditional statistical techniques can 
be applied when the appropriate precautions and assumptions 
are taken into account. Because of the multivariate nature of 
genetic (particularly genotypic) data, with gene frequencies of 
multiple loci distributed in multiple populations, multivariate 
statistical techniques such as principal components analysis, mul-
tidimensional scaling, and factor analysis can effectively identify 
relevant migratory patterns in genetic data (44). In particular, 
migration is predicted to have a linear effect on gene frequen-
cies, making principal components analysis, which can identify 
the genetic variation (i.e., geographic gene frequencies) that is 
most significant to realized genetic diversity in related popula-
tions, especially useful (Fig. 23.3).

The details of reconstructing a phylogenetic tree are described 
in Chapters 13–16. In short, the process involves: (1) sequence 
alignment, (2) determination/estimation of model parameters, 
(3) algorithmic determination of optimal tree(s), and (4) statis-
tical assessment of branch support. By tracing the geographic 
data of the tips of a reconstructed phylogeny (gene genealogy 
in the case of intraspecific migrations; see Note 6), the direction 
and timing (if estimates of branching events are available from, 
e.g., a molecular clock) of migration events can be determined. 
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Fig. 23.3. Principal components of the major genetic variation in European humans, based on allele frequency data from 
multiple loci and modified from (44). (A) The first principal component. (B) The second principal component. 
The gradients represent relative concentration of the loaded allele variants in each area. (A) Higher concentrations of the
PC1-loaded alleles are shown in green and lower concentrations grade toward yellow. These patterns closely 
follow the migration of early agriculturalists from the Near East. (B) Higher concentration of PC2 loaded alleles are 
shown in purple and lower concentrations grade toward red. These patterns closely follow the migration of Finno-Ugric 
language speaking groups. Together these patterns correlate closely with known historical migrations and demonstrate 
how multi-locus genotypic data can be analyzed to understand recent migrations.

Fig. 23.2. Examples of Structure output demonstrating how patterns of locus and individual assignment can inform 
locations of origin and patterns of migration. (A) Ancestry estimates for a strain of the bacterial parasite Helicobacter
pylori isolated from a black South African patient. Every single point corresponds to a polymorphic nucleotide, which is 
assigned to each population with a given probability. This isolate reveals that six genes segments are clearly from one 
(red) origin, with high probabilities whereas two other genes seem to be imported from another region (blue). Mosaic pat-
terns observed in H. pylori are a signature of direct contact and homologous recombination between different microbial 
populations, reproduced from (30). (B) Assignment data of individual H. pylori isolates from different locations. The pro-
portion of ancestry from each of three ancestral sources (blue, Africa; yellow, East Asia; and green, Indo-Europe) is rep-
resented by its proximity to the corresponding corner of the triangle, reproduced from (30). (C) Typical Structure output 
showing the posterior probability that a particular individual comes from one of five different populations (represented by 
different colors). Individuals with mosaic patterns are indicative of historic or ongoing contact between populations as a 
result of migration, reproduced from unpublished data.
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First, determine the geographic distribution of all tips. Then, 
following the rules of parsimony (see Note 1), trace the dis-
tribution as any other phenotypic character to ancestors. The 
geographic areas that are occupied by more basal branches are 
most likely ancestral ranges. Derived branches that occupy novel 
geographic areas are most likely to have resulted from migra-
tion (i.e., colonization or range expansion). Geographic areas 
inhabited by distantly related gene lineages are a signature of 
migration as well.

Maximum parsimony determines the most parsimonious rela-
tionships among an aligned set of DNA sequences. Parsimony 
is determined by the fewest number of base changes required 
along a reconstructed tree, which can result from either equally 
or unequally weighted character positions (i.e., base pair loci, 
usually considered as codon position in coding sequences). The 
most popular applications for reconstructing phylogenetic trees 
using parsimony are PAUP* (32) and PHYLIP (33). Trees can 
be rooted using an outgroup, thus providing temporal polarity 
for related sequences. In the context of geographic data of hap-
lotypes, this polarity can be used to determine the direction and 
timing of migration events (Fig. 23.4A).

These methods utilize a model of sequence evolution that is 
expected to best approximate the substitution pattern of a 
given set of aligned DNA haplotypes. An appropriate model 
of sequence evolution can be determined using either hierar-
chical likelihood ratio tests (hLRT) or the Akaike Information 
Criterion (AIC) in the programs ModelTest (34) and MrModel-
Test (35). Using a given model, gene trees can be built using 
any number of applications, the most popular of which include 
PAUP*, PAML, and PHYML. As above, trees can be rooted 
using an outgroup, thus providing temporal polarity for related 
sequences.

Bayesian inference can be used to assess the posterior prob-
ability of a given tree (or branch on a tree) under a particular 
model of sequence evolution (as in maximum likelihood) and 
with a given dataset. These methods typically use Metropo-
lis-Coupled Markov Chain Monte Carlo analysis to recon-
struct phylogenetic trees. The most popular implementation is 
MrBayes (36).

Quite often, the relationships among genes within a species or 
population are poorly represented by bifurcating or multi-
furcating trees produced by phylogenetic analysis. Networks, 
which allow haplotypes to be connected simultaneously to multiple 
other haplotypes in ways that can also produce loops, can better 
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represent the processes of reticulation (see Note 1), homoplasy, 
and recombination that occur within populations. As a result, 
reconstructing a loop in a network is a clue that some individuals 
possessing similar haplotypes may have interbred. When this pat-
tern correlates with distantly distributed haplotypes, migration is 
a possible explanation (as is the independent evolution of iden-
tical haplotypes). Specifically, a loop in a network may indicate 
recombination, such as may be produced by individuals possess-
ing distantly related haplotypes interbreeding following a migra-
tory event. Furthermore, when multiple genes are used, conflict 
among haplotype networks is a common sign of interbreeding. 
If a population tree can be estimated from these multiple genes, 
these conflicts can pinpoint putative migration.

Many methods have been developed to reconstruct haplotype 
networks. Most of these methods are based on genetic distance 

Fig. 23.4. The use of gene trees in inferring migrations. (A) In general, the polarity of ancestry for gene trees within 
species can inform the direction of movement. For instance, if most basal lineages are found in Eastern areas (light gray)
and derived lineages are found in Western areas (black), the inference of east-to-west migration of individuals carrying 
those genes, as in range expansion, is reasonable. More complex patterns often emerge, particularly when the genes/loci 
under investigation are inappropriate in either mutation rate or recombination pattern to resolve the migratory patterns 
of interest. (B) A tree inferred from concatenated housekeeping genes for 87 H. pylori isolates from Africa, East Asia and 
IndoEurope and (C) a tree for the same isolates derived from a single virulence gene, reproduced from (30) (black: African 
strains; dark gray: Indo-European strains; light gray: East Asian strains). Notice that evidence for selection in (C) is much 
greater and the branch lengths are longer, together indicating that this gene has inappropriate evolutionary properties 
for inferring migrations. On the other hand, the housekeeping genes, which are evolving more slowly and under purifying 
selection, carry a strong signature of migration out of Africa.
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between haplotypes and include the pyramids technique, split 
decomposition, median-joining, and statistical parsimony. Likeli-
hood methods have also been developed to reconstruct haplotype 
networks.

The NCPA of Templeton (37) uses a haplotype network and a 
series of nested clades (each clade level another mutational step 
more inclusive) to estimate the geographic distribution of related 
haplotypes. It can indicate how haplotypes (and the individuals pos-
sessing them) came to be distributed in space, including through 
various migratory processes such as long-distance dispersal and 
contiguous range expansion. Although the beginning of the proc-
ess employs statistical methods for determining the geographic dis-
tribution of haplotypes, the NCPA has been criticized for both the 
arbitrariness of the nesting procedure and the non-statistical nature 
of the inference procedure. There are four steps in this method:
 1. Construction of a haplotype network using a statistical parsi-

mony procedure (uses 95% confidence in a given parsimony-
estimation for each branch, thus allowing for loops in the 
network) implemented in the program TCS v. 1.13 (38).

 2. The networked haplotypes are then nested into hierarchical 
clades following the nesting rules outlined in Templeton et al. 
(39) and extended in Templeton and Sing (40). These rules 
group the most closely related haplotypes within clades and 
then group those clades into higher-level clades, at each step 
increasing the inclusion by one mutational difference.

 3. The statistical test of geographic association among and 
between haplotypes and nested clades is then performed 
using GeoDis v. 2.0 (41). This is done using two statistics 
that measure the distances within (Dc) and between (Dn)
nested clades. Distances are calculated from the locality data 
of haplotypes, with these locations considered continuous 
variables in a geographic distance matrix. At this step, it is 
possible to assess the probability of geographic association or 
non-association with phylogenetic structure because the test 
uses randomized geographic distances to test the probabil-
ity that the particular geographic distances sampled within a 
given clade (or haplotype) were sampled from a null distri-
bution of geographic distances (37, 42).

 4. Finally, the updated inference key of Templeton (43) is used 
to infer particular historical processes for clades in which sig-
nificant geographic association or dispersion was found.

In inferring patterns of migration, it is critical to follow as logical 
and refutable a pattern of deduction/induction as possible. The 
complex nature of both ecological and evolutionary forces acting 
upon migrating organisms, in addition to the complex mechanisms
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of genetic evolution, make inferring patterns of migration a dif-
ficult process. In order to effectively understand past (and/or 
ongoing) migrations, special attention must be paid to the infer-
ence structure. Following the outline laid out in the introduc-
tion, this inference structure should include:

● Explicit description of hypotheses
● Accurate assessment of how the data can address aspects of 

the hypotheses
● A logical pattern of hypothesis support and rejection based 

on different data or different analyses that proceeds from less 
complex aspects of migration to more global patterns

● Identification of all ancillary information and indirect evi-
dence for the hypotheses

● Appropriate description of how all ancillary information and 
indirect evidence relates to the hypotheses or to identified 
patterns of migration (i.e., degree of congruence)

● Identification of what data remains missing that could clearly 
support or reject the migration pattern inference

The most direct evidence available for observing migratory pat-
terns are direct observations of the movements themselves. In 
some cases this is possible, although generally the patterns of inter-
est are either too complex or have occurred in the past. Nonethe-
less, observations regarding vagility, diurnal or annual migration, 
and habitat use are extremely useful in clearly identifying historic 
migration patterns. We consider any data that is indivisibly tied to 
the organism’s genealogical history to be direct evidence. Genetic 
data are the most commonly used, and useful type, because its 
geographic distribution is dependent explicitly, and predictably, on 
the distribution and genealogy of the organism.

Indirect evidence can be an especially powerful tool when deci-
phering patterns of migration. Any evidence that is not intrinsic 
to an organism’s genealogical (or kinship) history can be consid-
ered indirect. This includes, for humans, data regarding language 
distribution because the geographic patterns do not depend 
entirely upon genealogical relationships. Nevertheless, language 
has been one of the most powerful tools in both predicting and 
clarifying patterns of human migration (45). It is also possible to 
deduce important aspects of the evolutionary history of organ-
isms through the population parameters of symbionts, in particu-
lar parasitic and commensalist microbes that can reveal startling 
patterns because they have co-evolved with their host. Host 
microbes often evolve at much faster rates than their hosts, mean-
ing that recent and short-lived migration events are preserved 
in their genealogy that may have been too fast or ephemeral for 
meaningful patterns of host genetic diversity to evolve (30). The 
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use of indirect evidence from symbionts has been mostly restricted 
to humans (46, 47), although in principal any organism is ame-
nable (see Note 7). For humans, useful parasites include the JC 
virus that infects renal tissue, human papillomavirus, the human 
T-cell lymphotropic virus, the hepatitis G virus, HIV, the eubac-
terium Helicobacter pylori, and the fungus Coccidioides immitis
(30). Indirect genetic evidence can be analyzed using the same 
tools as for direct evidence. However, in the inference process, 
the relationship between the indirect source and the organism(s) 
of interest must be considered and analyzed explicitly.

 1. Definitions
Vagility: The ability of an organism or a species to move 
about or disperse in a given environment. This can be meas-
ured by tagging or mark-recapture experiments.
Homoplasy: Similarity in the characters of two taxa that are 
not the result of inheritance from a common ancestor. This 
contrasts with homology.
Codominant: Equally expressed alleles of a gene (i.e., not 
dominant or recessive).
Parsimonious character reconstruction: To trace a character 
with the fewest numbers of steps required to go from an 
ancestral state to a derived state.
Reticulation: When independent branches of a phylogeny 
are intermingled, as in hybridization or species breakdown.

 2. Mutation Rate: The rate at which genetic changes occur is 
critical to obtaining an appropriate marker for inferring migra-
tion patterns. For nucleotide substitution changes, this can be 
best estimated using maximum likelihood models (using r8s or 
PAUP*) or Bayesian inference (using MultiDivTime). For mic-
rosatellite changes, two models of evolution are assumed, the 
infinite alleles model and the stepwise mutation model, both of 
which can be incorporated into population genetic analyses.

 3. Linkage Disequilibrium: Most statistical analyses of popu-
lation genetic data assume that the loci being analyzed
are unlinked, that is that they evolve as basically independent
markers, and the results can be heavily biased if this assump-
tion is violated. Linkage disequilibrium can be tested by 
evaluating the probability of genetic association between 
pairs of loci given the observed frequency and is imple-
mented in most comprehensive population genetics soft-
ware packages.

4. Notes4. Notes
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 4. Selection: Selection can result in artificial groupings of popula-
tions with different histories and genealogies (Fig. 23.4B). 
Comparison of non-synonymous amino acid changes (dN)
and synonymous amino acid changes (dS) in protein-coding 
genes is a common measure of selection pressure. The ratio 
of these two rates is measured by ω = dN/dS with ω = 1, < 1, 
and > 1 indicating neutral evolution, purifying selection, 
and directional selection, respectively. Additionally, several 
evolutionary models exist that account for site-specific dif-
ferences in adaptive selection at the protein level (48), and 
are implemented in PAML. Classic estimates of selection 
on one or more loci of genotypic data such as Tajima’s D 
and Fu’s F are implemented in several population genetic 
software packages.

 5. Recombination: The population recombination rate can be 
estimated by a composite likelihood method such as LDHAT
(49). LDHAT employs a parametric approach, based on the 
neutral coalescent, to estimate the scaled parameters 2Ner,
where Ne is the effective population size and r is the rate at 
which recombination events separate adjacent nucleotides. 
An alternative solution is to use the homoplasy ratio (50).

 6. Multiple Gene Trees: A gene tree is not an organismal tree 
and therefore phylogenies should be based on multiple genes. 
By doing so, a “partition homogeneity test” (51) can be 
used to detect heterogeneity in phylogenetic signals among 
the individual genes. If the test reveals insignificant hetero-
geneity, the different genes can be concatenated for subse-
quent analyses. The use of multiple genes typically results in 
stronger statistical support and more accurate phylogenies. 
The Shimodaira-Hasegawa test (52), Bayesian compatibility 
(53), and quartet puzzling (54) can be applied in order to 
estimate the likelihood of different topologies.

 7. Transmission Mode: Extensive knowledge of the transmis-
sion mode should be available before a microbe should be 
considered as a tracer of the history of its host. This knowl-
edge can be acquired in many ways, including investigations 
of transmission from mother to child, parent to child, and 
within families over several generations (30).
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Chapter 24

Fixed-Parameter Algorithms in Phylogenetics

Jens Gramm, Arfst Nickelsen, and Till Tantau

Abstract

This chapter surveys the use of fixed-parameter algorithms in phylogenetics. A central computational prob-
lem in this field is the construction of a likely phylogeny (genealogical tree) for a set of species based on 
observed differences in the phenotype, differences in the genotype, or given partial phylogenies. Ideally, 
one would like to construct so-called perfect phylogenies, which arise from an elementary evolutionary 
model, but in practice one must often be content with phylogenies whose “distance from perfection” is as 
small as possible. The computation of phylogenies also has applications in seemingly unrelated areas such as 
genomic sequencing and finding and understanding genes. The numerous computational problems arising 
in phylogenetics are often NP-complete, but for many natural parametrizations they can be solved using 
fixed-parameter algorithms.

Key words: Phylogenetics, perfect phylogeny, fixed-parameter algorithms, fixed-parameter tractable.

In phylogenetics, one studies how different species are evolu-
tionarily related. Instead of species, the basic building blocks of 
biodiversity, one can also more generally consider taxa, which 
are arbitrary groupings of organisms and sometimes even single 
organisms. The basic paradigm is that species spawn new species, 
for example when part of a species’ population adapts to a chang-
ing environment. Over time the set of extant species changes as 
new species emerge and other species become extinct. The ances-
tral relationship between the species can be depicted by arranging 
them in a tree, called a phylogenetic tree or phylogeny, in which the 
leaves are labeled with extant species and bifurcations correspond 
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to events such as adaptations that lead to new species. Interior 
nodes are labeled with ancestral species or not at all when the 
ancestral species are unknown or not of interest.

Building phylogenies is not an easy task. The problems start 
with determining the set of taxa since it is not always clear where 
one should draw the line between, say, different species. How-
ever, suppose a set of taxa has been agreed on and the task is to 
arrange them in a phylogeny. Then one only has data from extant 
taxa, but not ancestral taxa. In rare, fortunate cases one might 
have access to fossils, but normally the evolution path taken is 
unknown.

Even if all taxa in an anticipated phylogeny are known, how 
they should be arranged often remains subject to debate. One 
way to solve this problem is to infer the phylogeny by looking at 
different characters of the taxa such as, say, the form of the skel-
eton. Taxa for which the form of the skeleton is similar should be 
in the same subtree of the phylogeny. The joint information from 
many characters often leaves us with a single phylogeny or at least 
few possible ones. In biology, principal sources of characters are 
the phenotype of a taxon, which is roughly “the way the organ-
isms of the taxon look,” but also genomic information such as 
which genes are present in the organisms of a taxon.

The construction and study of phylogenetic trees has many 
applications. First of all, a phylogeny allows a glimpse at how 
evolution works and can help in classifying organisms. Second, 
one can compare multiple phylogenies built for the same set of 
species based on, say, different parts of the genome. A third, 
rather intriguing application of phylogenies, is their use as meas-
ures in other applications. One such application is the haplotype
phase determination problem, presented in detail in Section 7.2,
in which the tricky part is not so much finding the biologically 
most likely solution, but measuring how likely is that solution. 
An elegant way of doing this is to declare as “good solutions” 
those that can be arranged in a phylogeny.

The most fundamental problems in phylogenetics are not com-
putational in nature. Deciding what exactly counts as a taxon, 
choosing a set of characters, or deciding which states a taxon is in 
are not computational problems, but require human experience 
and judgment. However, once these decisions have been made, 
many computational problems arise that cannot be solved “by 
hand” because large amounts of input data need to be processed, 
as is the case in phylogeny-based haplotyping, for instance. The 
following provides an overview of the computational problems 
addressed in this survey; good starting points for further reading 
on computational issues in phylogenetics are (1–4).

A fundamental problem in phylogenetics is the construction 
of a phylogeny for a set of taxa (detailed mathematical definitions 
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are given later). One is given a set of taxa, a set of characters, and 
for each character and taxon the state of the taxon with respect to 
the character. State information for taxa and characters is typically 
arranged in matrices such as the one shown in Table 24.1.

The model of evolution that one chooses determines which 
phylogenies are considered good explanations of the observed 
character-state matrix. A basic model is the following: All taxa 
sharing a state for some character are descendants of the same 
taxon and mutations of a character to some state happen only 
once. One possible way of checking whether this condition is 
true for a phylogeny is to check whether for each character and 
each pair of states the path between any two taxa in the first state 
and the path between any two taxa in the second state do not 
intersect. Such a phylogeny is called perfect.

A second set of computational problems arises when it is not 
possible to arrange taxa in a perfect phylogeny. One then has sev-
eral options: First, one can lower one’s standards of what counts 
as a good phylogeny by allowing a small number of “backward 
mutations” in the tree. Second, one can still try to find a perfect 
phylogeny, but only for a subset of the taxa or for a subset of 
the characters. Third, one can claim that the data must be in 
error and try to find a way—as little disruptive as possible—to 
modify the data such that a perfect phylogeny can be obtained. 
Although this is not advisable in general (we cannot simply claim 
that elephants can fly, just to fit them into a perfect phylogeny), 

Table 24.1
Character-state matrix that admits a perfect phylogeny

Species
Hyaline 
margin

Marginal
carina

Premarginal
carina

Chelopistes guttatus 0 0 0

Osculotes macropoda 0 1 0

Oxylipeurus dentatus 1 1 1

Upupicola upupae 0 0 2

Perineus nigrolimbatus 2 0 2

It is a submatrix of a much larger character-state matrix, compiled by Smith 
(5), that contains entries for 56 lice species and 138 characters. The num-
bers in the matrix encode the different states of the characters. For example, 
for the character marginal carina the 0 entries mean that the adult marginal 
carina “forms a complete thickened band running anteriorly around the pre-
antennal region of the head” and the 1 entries mean that it “forms a band 
which is interrupted laterally (partially or completely), medially (dorsally 
and/or ventrally) or both” (5).
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genomic data are often obtained through laboratory processes in 
which one cannot avoid a percentage of wrong entries.

Phylogenies need not always be constructed “from scratch” 
based on character state data. Rather, one often has access to 
partial phylogenies that are subtrees of the sought-for phylog-
eny. An example is the tree of life: One cannot construct the 
phylogenetic tree of all taxa on this planet based on an enormous 
character database for millions of taxa. Rather, the objective is to 
merge many different small phylogenies from the literature into 
one big phylogeny, appropriately called a supertree.

For a related problem, one also does not need to construct 
phylogenies from scratch, but several complete candidate phyl-
ogenies obtained through external means are given and the job 
is to compute biologically meaningful distances between them—a 
difficult problem all by itself.

Most computational problems in phylogenetics turn out to be 
NP-complete, forcing us to look for heuristics, approximation 
algorithms, or fixed-parameter algorithms. The fixed-parameter 
approach turns out to be especially successful. (Readers unfa-
miliar with NP-completeness or fixed-parameter algorithms are 
invited to have a look at Sections 1.1 and 1.2 in Chapter 21 of 
Volume 2 of this book.)

The reason for the success of the fixed-parameter approach 
is that a number of problem parameters are small in realistic 
instances for phylogenetic problems, such as the number of states 
per character, the number of characters, or our tolerance for 
errors. For instance, the number of states per character is at most 
four (and in many cases even two) whenever single nucleotide 
polymorphisms in genomic data are involved and the running 
time of many algorithms is exponential in the number of states 
per character, but polynomial otherwise. The present chapter 
presents further examples of parameters that are small in prac-
tice, allowing us to construct efficient, exact algorithms for many 
computational problems arising in phylogenetics.

The central goal of this survey is to highlight selected fixed-
parameter algorithms from the area of phylogenetics. The chosen 
examples are intended to illustrate the diversity of computational 
problems for which fixed-parameter algorithms have been devel-
oped within the area of phylogenetics. No detailed proofs are 
included in this survey, except for three short proofs of new easy 
results that are included for completeness.

Section 2 introduces one possible version of the formal 
problem of constructing a perfect phylogeny and studies how the 
parameters number of taxa, number of characters, and number 
of states per character influence the tractability of the problem. 
Section 3 studies ways of measuring the deviation of a given 
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phylogeny from “perfection.” Section 4 treats problems in 
which the task is to find a phylogeny that is near to perfection 
with respect to the introduced measures. Section 5 looks at 
problems in which the task is to compute distances between 
phylogenies. Section 6 treats the problem of merging several 
partial phylogenies. Section 7 considers applications in which 
construction of a phylogeny is just a means to find regulatory 
genomic elements or determine haplotype phase. The Conclu-
sion provides an outlook.

This section studies how computationally difficult it is to con-
struct a perfect phylogeny. First, it defines the problem PP (per-
fect phylogeny) formally, and discusses possible variations. Then 
it considers the complexity when one of the three central param-
eters: number of taxa, number of characters, or number of states 
per character, is fixed.

Fix a set C of characters, such as size or color, and for each character 
c∈C fix a set Σc of states for this character, such as Σsize = {small, 
medium, big}. Then the input for the perfect phylogeny problem 
is a set S of taxa together with one mapping for each taxon s∈S,
each of which assigns an element of Σc to each character c∈C.

There are three natural parameters in such inputs:
● The number n of taxa
● The number m of characters
● The maximum number r of states a character can have

For computational issues, the names of the characters, states 
for each character, and taxa are not really important. Consequently, 
the notation can be made simpler by assuming that the set S of taxa 
is {1,…,n}, the character set C is {1,…,m}, and each state set 
is Σi = {0,…,r – 1}. It is customary to start the states with 0 so 
that if there are just two states, then they are 0 and 1. The states 
of a taxon can now be described by a vector from the set Σ1 × … × 
Σm = {0,…,r – 1}m. Thus, the n input taxa are described by vectors 
of length m with entries from {0,…,r – 1}. Another way to think 
about the input is in terms of an (n × m)-matrix with entries 
from {0,…,r – 1}. Be cautioned that in the biological literature 
these matrices are sometimes presented in transposed form.

Before defining perfect phylogenies, first define phylogenies.
Readers familiar with phylogenetics may be surprised that inter-
nal nodes are allowed to be labeled. The reasons for this are 
explained in the following.

2. Construction 
of Perfect 
Phylogenies
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Definition 1 (phylogeny): Let A be a matrix describing n taxa. 
A phylogeny for the matrix A is a tree T whose node set V is labeled 
using a labeling function l:V → {0,…,r – 1}m such that:
1. Every row of A (i.e., each taxon’s state vector) is a label of some 
node in T.
2. The labels of the leaves of T are rows of A. (The labels of inner 
nodes correspond to ancestral taxa, which need not, but may, be part 
of the input.)

Be cautioned that phylogenetic trees may not always be the best 
way of describing evolutionary relationships, because they do not 
account for horizontal gene transfers in which a gene is transfered 
between unrelated taxa by a “mixing” of the genetic material. 
The present survey restricts attention to phylogenetic trees, nev-
ertheless, since one should try to understand these before tack-
ling the more difficult phylogenetic networks.

Recall that in the evolutionary model assumed in perfect phy-
logeny all taxa sharing a state for some character have the same 
ancestor and a mutation of a character to a state occurs only once. 
This can be formalized as follows:

Definition 2 (perfect phylogeny): A phylogeny for a matrix A is per-
fect if for every character c ∈ C and every state j ∈ Σc = {0,…,r – 1}, 
the graph induced by the set of nodes labeled by a state vector 
(S1,…,Sm) with Sc = j is connected.

Definition 3 (perfect phylogeny problem): The input for the perfect 
 phylogeny problem (abbreviated PP) is a character-state A for n taxa. 
The task is to decide whether there exists a perfect phylogeny for A.

Some remarks on the definition are in order both with respect 
to its biological relevance and to the chosen mathematical for-
malization.

Concerning biological relevance, one can object that real bio-
logical character-state matrices rarely admit a perfect phylogeny. For 
example, Table 24.1 displays a real-life instance of PP, and a perfect 
phylogeny for this matrix is shown in Fig. 24.1. However, this table 
is just a small part of a much larger matrix compiled by Smith (5),
and the whole matrix does not admit a perfect phylogeny. Neverthe-
less, there are several reasons to study perfect phylogenies:

● PP is a basic computational problem in phylogeny construc-
tion and we would like to understand this problem well 
before we attack more complicated settings.

● Even if data cannot be arranged in a perfect phylogeny, we 
may still try to find a phylogeny that is “as perfect as possi-
ble,” see Section 4.

● There are biological settings where the perfect phylogeny 
model works quite well.
We have chosen, for this survey, a rather broad formalization 

of perfect phylogenies. We allow an arbitrary tree topology, the 
input taxa can be found both at the leaves and at inner nodes,
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and the same label may be found at different nodes. 
We only insist that there are no superfluous leaves, 
although this condition is not necessary either. Other 
definitions in the literature impose more structure 
on perfect phylogenies:

● It is often required that the set of leaf labels equals 
the set of rows of the input matrix; that is, it is not 
allowed to place a taxon only at inner nodes. A per-
fect phylogeny in the sense of the second definition

can be turned into a phylogeny with the input taxa at the 
leaves by adding a pending leaf to all inner nodes that harbor 
an input taxon.

● It is often convenient to have more control over the tree 
topology. It is particularly convenient to consider binary 
trees, which are trees in which every node either has degree 
one (leaves) or degree three (inner vertices). This can also be 
achieved easily: Replace all nodes of too high degree by small 
binary trees with all nodes labeled by the original node’s label; 
remove all nodes of degree two and join their adjacent nodes.

● It is sometimes required that all labels are distinct. This 
can be accomplished by contracting subtrees whose nodes 
all have the same label (and, indeed, sets of nodes that are 
labeled identically must form a connected subtree in a perfect 
phylogeny). However, this contraction process may destroy 
the binary tree property and also the property that input taxa 
must label leaves.
In a perfect phylogeny there is no designated root node and, 

in general, it may be debatable which taxon should be considered 
the “root.” If, for whatever reason, a root node has been chosen, 
the phylogeny is called directed.

Having defined (the decision version of) the perfect phylog-
eny problem, the natural question is, how difficult is this prob-
lem? Unfortunately, it is NP-complete.

Theorem 4 (6, 7): PP is NP-complete.

This result suggests that in order to tackle the problem we must 
look at restricted versions. We do so by fixing the various central 
parameters: number n of taxa, number m of characters, and the 
maximum number r of states per character.

The first restriction is to limit the number n of taxa in the input. 
Intuitively, if there are just, say, four taxa, it should not be par-
ticularly hard to find out whether we can arrange them in a per-
fect phylogeny; after all, there are only a fixed number of tree 
topologies for them.

Theorem 5: PP can be solved in time O(2n n!·m).

Proof: For a fixed binary tree topology T and a one-to-one assign-
ment of elements in S and leaves of T, it can be tested in time O(nm), 

2.2. Number of Taxa 
as the Parameter
2.2. Number of Taxa 
as the Parameter

Fig. 24.1. One possible 
perfect phylogeny for the 
character-state matrix 
from Table 24.1. The labels 
assigned to the vertices of 
the phylogeny are shown 
in parentheses.
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whether the inner nodes of T can be labeled in a way such that 
T is a perfect phylogeny for S. The number of possible binary trees 
with n distinctly labeled leaves is known to be 1·3·5· … ·(2n – 5) ≤ 2n

(n – 2)!. Therefore, enumerating all binary trees for S and testing each 
for being a perfect phylogeny for S yields the stated running time.

Theorem 5 shows that PP is (more or less trivially) fixed-param-
eter tractable with respect to n. The algorithm simply enumerates 
all possible trees and tests whether they are a phylogeny for the 
data. It cannot handle a number n of taxa greater than perhaps 10, 
although in practical situations one typically has over 100 taxa. 
More clever exhaustive search algorithms in phylogenetics push 
the maximum number of taxa that can be handled to between 12 
on desktop machines and about 15 on workstations; but what 
we really would like to find is a fixed-parameter algorithm for the 
parameter n based, ideally, on a kernelization algorithm followed 
by a search tree algorithm, yielding a running time such as the 
one stated in the open problem that follows. (For an introduc-
tion to kernelization and search tree algorithms see Sections 2
and 3 in Chapter 21 of Volume 2).

Open Problem 6: Is there a fixed-parameter algorithm for PP with respect 
to the parameter n with a running time in O (cn + (mr)O (1)) for some 
c close to 1?

Returning to an arbitrary number of taxa, look at what happens 
when the number m of characters is fixed. This is justified in an 
important practical application. As argued by Gusfield in (8), the 
perfect phylogeny model explains genomic variations well when 
crossing over effects are not present. This implies that for short
genomic sequences, the perfect phylogeny model applies, and for 
longer sequences, we can try to partition the sequence into short 
intervals and derive perfect phylogenies for these small sets of 
characters.

Once more, the intuition is that it should be easy to find 
a perfect phylogeny if there are only, say, three characters and, 
indeed, Morris, Warnow, and Wimer present an algorithm with 
the following running time:

Theorem 7 (9): PP can be solved in time O (rm + 1mm + 1 + nm2).

Using a different approach, Agarwala and Fernández-Baca arrive 
at the following running time:

Theorem 8 (10): PP can be solved in time O ((r – n/m)m ·rnm).

For fixed m, both of the preceding time bounds are polynomial 
in n and r. However, neither algorithm shows that the problem 
is fixed-parameter tractable, as there are still m in the exponent 
and another input parameter in the base. Unfortunately, the work 
of Bodlaender et al. (11) shows that it is unlikely that this can be 
remedied, since it would have consequences (namely, certain com-
plexity class collapses) that many theoreticians consider unlikely.
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The third natural parameter for the perfect phylogeny problem is 
the number of states per character. Fixed-parameter results for this 
number are especially important since it is, indeed, small in many 
applications. For instance, there are only four genomic characters 
or, if one also takes alignment-induced gaps into account by add-
ing a “no-data” or “gap” state, five. Even better, in applications 
such as the phylogeny-based haplotyping presented in Section
7.2, there are only two different states for each character.

The first fixed-parameter algorithm for the parameter r was 
proposed by Agarwala and Fernández-Baca. It has the following 
running time:

Theorem 9 (12): PP can be solved in time O (23r·(m3n + m4) ).

This result was later improved by Kannan and Warnow.
Theorem 10 (13): PP can be solved in time O (22r ·m2n).

An O (m2n) algorithm for the special case r = 3 had already been 
achieved by Dress and Steel (14). Kannan and Warnow (15) give 
an O (mn2) algorithm for r = 4.

For the special case r = 2 one can make use of a simple but pow-
erful characterization of matrices that admit a perfect phylogeny. The 
characterization is in terms of a forbidden induced submatrix and has 
been rediscovered independently by several authors (16, 17).

Theorem 11: For r = 2, a matrix A of taxa has a perfect phylogeny if and 
only if it does not contain the following induced submatrix:

0 0
0 1
1 0
1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

Employing this characterization, which also plays a role in Section 
4.2, Gusfield devised an algorithm running in linear time.

Theorem 12 (18): For r = 2, a PP can be solved in time O (mn).

The results of this section can be summed up as follows: PP with 
respect to either of the parameters n and r (number of taxa and 
number of states per character) is in FPT, but with respect to the 
parameter m (number of characters) it is unlikely to be fixed-
parameter tractable.

The previous section studied perfect phylogenies, but in practice 
one often has to deal with imperfect phylogenies. In this case one 
may look for a phylogeny that is at least “near” to being perfect. 
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For this, one needs to measure how strongly a phylogeny deviates 
from being perfect.

The basic assumption underlying perfect phylogenies is that 
mutations of a character to some state happen only once. We start 
with two measures that count, in different ways, how often this 
assumption is violated. Note that the input for these problems is 
a phylogeny, not a matrix. The closely related Section 4.1 treats, 
for each measure, the question of finding some phylogeny for an 
input matrix that minimizes the distance to perfection.

The first measure is the penalty of a phylogeny, due to 
Fernández-Baca and Lagergren (19).

Definition 13 (length and penalty of a phylogeny): For an edge of a 
phylogeny connecting nodes u and v, we define the length of the 
edge as the Hamming distance of u and v (the number of characters 
where the states differ). The length of a phylogenetic tree T is the sum 
of lengths taken over all edges of the tree. The penalty of a phyloge-
netic tree T is defined as:

penalty T length T rc
c C

( ) ( ) ( ),= − −
∈
∑ 1

where rc is the number of states of character c that are present in the 
phylogeny.

The idea behind this measure is the following: The length of 
an edge e connecting taxa u and v is the number of mutations that 
occurred between u and v. For a perfect phylogeny, a new state 
is introduced by a mutation only once; therefore, every character 
c contributes exactly rc – 1 to the length of the tree. Hence, the 
penalty of a tree counts how often the assumption “each new 
state is introduced only once by a mutation” is violated. Perfect 
phylogenies have penalty 0.

The second measure is the phylogenetic number, due to 
Goldberg et al. (20). For a state j and a character c let Tc,j denote 
the subgraph of the phylogenetic tree T induced by the set of 
nodes whose labels are in state j for the character c. Then the 
phylogenetic number is defined as follows:

Definition 14 (phylogenetic number): The phylogenetic number of a 
phylogeny T is the maximum number of times that any given state 
arises in T, that is, the maximum number, taken over all characters 
c and all states j, of connected components in Tc,j. Phylogenies with 
phylogenetic number l are called l-phylogenies.

Perfect phylogenies are 1-phylogenies. Unlike penalty, which 
bounds the total number of violations of the basic evolutionary 
model, the parameter l does not restrict the total number of vio-
lations, but violations may not “concentrate” at a single state.

A third measure with a similar flavor is the number of bad 
states. It is due to Moran and Snir (21), who study how to get 
rid of bad states by a minimal number of recolorings. (Compare 
Definition 21 in the next section.)

3.1. Measures Based 
on Relaxed Evolutionary 
Models

3.1. Measures Based 
on Relaxed Evolutionary 
Models



 Fixed-Parameter Algorithms in Phylogenetics 517

Definition 15 (number of bad states): Given a phylogeny T and a 
character c, the character’s number of bad states is the number of 
states j for which Tc,j is not connected. The number of bad states of 
a phylogeny T is the maximum of the numbers of bad states at any 
character.

Clearly, for a given phylogeny all of the preceding measures can 
be computed in polynomial time.

Measures are now introduced that are based on the idea that if 
the input data does not admit a perfect phylogeny, the data must 
be flawed. One then tries to modify or even remove the taxa of 
a given phylogeny until a perfect phylogeny is reached. Note, 
again, that the input is a phylogeny, not a matrix. The taxa are 
already arranged in a tree and we only wish to know how the 
particular input phylogeny needs to be modified to arrive at a 
perfect phylogeny. Section 4.2 studies the related, but different, 
problem of modifying a character-state input matrix so that the 
resulting matrix admits a perfect phylogeny.

For the first measure of this type one tries to prune a phylo-
geny until it becomes perfect.

Definition 16 (tree perfection by taxa removal problem): The input 
for the tree perfection by taxa removal problem is a phylogeny T and a 
number k. The task is to decide whether one can turn the phylogeny 
T into a perfect phylogeny by repeatedly cutting away leaves such 
that at most k of the original leaves are removed.

It is not straightforward to minimize the number of taxa remov-
als since there are many ways to prune a phylogeny; indeed, this 
problem is NP-complete already for r = 2:

Theorem 17: For every r ≥ 2, the tree perfection by taxa removal prob-
lem is NP-complete.

Proof. The problem clearly is in NP. Hardness is shown by reducing 
the vertex cover problem to it. For a graph G = (V, E) with |V| = n and 
|E| = m construct a star-shaped phylogeny T with one center node and 
n leaves, one for each vertex v∈V. The taxa have m characters ce, one 
for each edge e∈E. Each character has two states 0 and 1. The center 
node is labeled 0m. The leaf in T corresponding to vertex v in G is 
labeled with the character-state vector that has state 1 for character ce
if and only if v is an endpoint of e. Now, for each edge there are two 
taxa (leaves) in the phylogeny for which the state of ce is 1. At least 
one of these taxa has to be removed to make the phylogeny perfect, 
because of the 0m vector in the “center.” Therefore, the vertex cov-
ers of G correspond exactly to sets of leaves whose removal lets T
become perfect.

Open Problem 18: Is the tree perfection by taxa removal problem 
fixed-parameter tractable with respect to the parameter k (number of 
removed taxa)?

A second measure counts how many characters must be removed 
(disregarded) so that the phylogeny becomes perfect. This 
number is much easier to compute.
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Definition 19 (tree perfection by character removal problem): The 
input for the tree perfection by character removal problem are a phyl-
ogeny T and a number k. The task is to decide whether the phylogeny 
T can be turned into a perfect phylogeny by disregarding at most k
characters.

Theorem 20: The tree perfection by character removal problem can be 
solved in polynomial time.

Proof: A character is either “in error” (because there is a state such 
that the set of all taxa of this state for the character is not connected, 
which can be checked in polynomial time) or the character is “clean.” 
Disregard all erroneous characters and this suffices.

A third measure, implicitly introduced by Moran and Snir (21),
is based on a more fine-grained analysis of the erroneous charac-
ters. Instead of just disregarding those characters that violate the 
connectedness condition, we try to “fix them” by changing the 
states at a minimal number of places. Such a change of state may 
also be regarded as a recoloring since states correspond to colors 
in equivalent formulations of the perfect phylogeny problem.

Definition 21 (recoloring number): Given a phylogeny T, the recolor-
ing number is the minimal number of state changes (the number of 
times one needs to change a state in some node label) needed to 
arrive at a perfect phylogeny.

Definition 22 (tree perfection by recoloring problem): The input for the 
tree perfection by recoloring problem consists of a phylogeny T and a 
number k. The task is to decide whether the recoloring number of T
is at most k.

Finding an optimal recoloring for one character is not influenced 
by recolorings necessary for another character, so one can com-
pute the recoloring number for each character separately. Hence, 
the problem reduces to the problem for a single character (called 
convex recoloring of trees problem by Moran and Snir), which 
Moran and Snir show to be NP-complete. Indeed, Moran and 
Snir show something even stronger.

Theorem 23 (21): The tree perfection by recoloring problem is NP-com-
plete, even if one allows only instances in which the phylogeny forms a 
path and where there is only a single character.

On the other hand, Moran and Snir present an algorithm for 
computing the recoloring number. Recall that b is the number of 
bad states, see Definition 15, which are the states (or colors) for 
which some action needs to be taken.

Theorem 24 (21) The tree perfection by recoloring problem can be 
solved in time O ((b/logb)b·bmn4).

The preceding theorem shows that computing the recoloring 
number is fixed-parameter tractable with respect to the number 
of bad states.

Open Problem 25: With respect to which other parameters is the tree 
perfection by recoloring problem fixed-parameter tractable?
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This section studies algorithms that construct phylogenies that 
are “almost” or “nearly” perfect. To define what counts as a good 
phylogeny, we use the measures introduced in the previous 
section. Having fixed a measure, our objective is now to find a 
phylogeny of minimal measure for a given input matrix. Intui-
tively, this is a much more difficult problem than the ones studied 
in the previous section, which just computed the measure of a 
single phylogeny; and often already this seems difficult.

Start with algorithms that find phylogenies, minimizing the 
penalty (number of excess mutations) from Definition 13, the 
phylogenetic number (one plus the maximum of the number of 
excess mutations per state) from Definition 14, or the number 
of bad states (number of states for which an excess mutation has 
occurred) from Definition 15.

Definition 26 (measure minimization problems): The input for the 
problems phylogenetic penalty minimization, phylogenetic number 
minimization, and phylogenetic bad states minimization is a matrix 
A of taxa and a number p. The task is decide whether there exists a 
phylogeny for A of penalty at most p, with a phylogenetic number of 
at most p, or with at most p bad states.

Fernández-Baca and Lagergren (19) call phylogenies that mini-
mize the penalty “near-perfect,” but this chapter uses phylogenetic
penalty minimization for consistency.

All problems are generalizations of PP since when the pen-
alty is 0 (or 1, for the phylogenetic number), the task is simply 
to decide whether a perfect phylogeny exists. This shows that 
one cannot hope for a fixed-parameter algorithm for any of these 
problems with respect to the parameter p alone. If we take the 
parameter r also into account, two theorems are known about 
minimizing the penalty.

Theorem 27 (19): The phylogenetic penalty minimization problem can 
be solved in time O (mO (p)2O (p2r2) ·n).

Theorem 28 (22, 23): For r = 2, the phylogenetic penalty minimization 
problem can be solved in time O (2O(p2) ·nm2).

Theorem 28 tells us that for the particularly interesting case of 
only two states per character there is a fixed-parameter algo-
rithm for finding a good phylogeny with respect to the param-
eter penalty.

Much less is known about minimizing the phylogenetic 
number or the number of bad states.

Open Problem 29: For which, if any, parameters or parameter pairs are 
the phylogenetic number minimization or phylogenetic bad states 
minimization problems fixed-parameter tractable?
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The next measures that we considered were based on the idea that 
one may modify the input to arrive at a perfect phylogeny. Trying 
to minimize these measures leads to the following problems:

Definition 30 (PP by taxa removal problem): The input for the PP by 
taxa removal problem is a matrix A of taxa and a number k. The task is 
to remove at most k taxa (rows) from A such that the resulting matrix 
admits a perfect phylogeny.

Definition 31 (PP by character removal problem): The input for the 
PP by character removal problem is a matrix A of taxa and a number 
k. The task is to remove at most k characters (columns) from A such 
that the resulting matrix admits a perfect phylogeny.

For the case r = 2 there is a characterization of matrices that admit 
a perfect phylogeny by a forbidden submatrix (see Theorem 11). 
Combining the results proved in (24) on forbidden submatrices 
and results on the fixed-parameter tractability of the hitting set 
problem, one gets the following results.

Theorem 32: For every r ≥ 2, both the PP by taxa removal and PP by 
character removal problems are NP-complete.

Theorem 33: For r = 2, the PP by taxa removal problem can be solved in 
time O (3.30k + n4) and also in time O(2.18k n + n4).

Theorem 34: For r = 2, the PP by character removal problem can be 
solved in time O(1.29k + m2).

For larger r, where no characterization in terms of forbidden subma-
trices is known, the complexity of the removal problems is open.

Open Problem 35: Are the PP by taxa removal and PP by character 
removal problems with parameter k fixed-parameter tractable for all r?

Definition 36 (PP by recoloring problem): The input for the PP by 
recoloring problem is a matrix A of n taxa and a number k. The task 
is to decide whether A has a phylogeny with recoloring number of 
at most k.

Recall that computing the recoloring number of a given phylog-
eny is fixed-parameter tractable with respect to the parameter 
b (number of bad states), but nothing is known for the PP by 
recoloring problem.

Open Problem 37: How difficult is the PP by recoloring problem?

This section studies how difficult it is to compute the distance 
between phylogenies, which need not be perfect. Computing such 
distances is important when several candidate phylogenies are given, 
obtained either computationally by different methods or compiled 
from different literature sources. We discuss three classical, well-
known editing distance measures as well as a recently introduced dis-
tance measure based on planar embeddings of the involved trees.

One way to define a distance between phylogenies is to count 
the number of modifications necessary to transform one 
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phylogeny into another. Possible modifications include deletion 
and insertion of taxa or the movement of a subtree of the phylog-
eny to another place. For different sets of allowed modifications, 
one gets different notions of distance. Three increasingly general 
modifications have been studied extensively in the literature (see 
the book by DasGupta et al. for an entry point) (25). Usually 
these operations are considered only on undirected, binary phylo-
genies in which taxa label only leaves.

The first operation is the nearest neighbor interchange. In a 
binary phylogeny, every internal edge has four subtrees attached 
to it (two at the one end of the edge and two at the other end) 
and the nearest neighbor interchange exchanges two such sub-

trees. This means that the tree: CA
B D

can be changed into: D
BA

C
or into: D

A C
B

The second operation is the subtree prune and regraft operation. 
Here one is allowed to cut an edge anywhere in the phylogeny 
and to reattach (regraft) the root of the subtree that has been cut 
at some other place (Fig. 24.2). It is not too hard to see that 
nearest neighbor interchange is a special case of subtree prune 
and regraft. The subtree prune and regraft operation models a 

Fig. 24.2. Example of how the subtree prune and regraft operation works. In the left 
phylogeny the edge between u and v is cut and then the tree rooted at v is regrafted at a 
new position in the right phylogeny. The right phylogeny takes the presence or absence 
of the gene encoding N-acetylneuraminate lyase into account. This gene is present in 
vertebrates and bacteria but not in the other taxa, suggesting that a horizontal gene 
transfer took place. The announcement (55) in Nature that humans may have acquired 
over a hundred genes directly from bacteria made newspaper headlines, but the two 
Science articles Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? 
(56) and Are There Bugs in Our Genome? (57) quickly challenged the findings and sug-
gest other explanations, at least for most genes.
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horizontal gene transfer, in which a gene is transfered between 
unrelated taxa by a mixing of their genetic material. As argued for 
instance in (26), such transfers must be taken into account when 
one intends to fully understand evolutionary processes.

The third operation is the tree bisection and reconnection oper-
ation. It is nearly the same as the subtree prune and regraft opera-
tion, only we now allow any node (rather than only the root) of the 
tree that has been cut away to be connected to the remaining tree. 
This operation is more general than the subtree prune and regraft 
operation, but one can simulate a tree bisection and reconnection 
operation by two subtree prune and regraft operations.

Definition 38 (distance problems): The input for the three problems 
NNI distance, SPR distance, and TBR distance are two binary, undi-
rected phylogenies with input taxa labels only at the leaves and a 
distance d. The task is to decide whether at most d nearest neighbor 
interchanges, d subtree prune and regraft operations, or d tree bisec-
tion and reconnection operations suffice to transform the first phyl-
ogeny into the second, respectively.

Computing distances for phylogenies turns out to be a hard 
job. Computing the distance of two phylogenies with respect 
to either the nearest neighbor interchange operation or the 
tree bisection and reconnection operation is NP-hard and it is 
strongly suspected that the same is true for the subtree prune 
and regraft operation.

Theorem 39 (27): The NNI distance problem is NP-complete.

Open Problem 40: Is the SPR distance problem also NP-complete?

(An NP-completeness proof for SPR distance given in (28) turns 
out to be incorrect as argued by Allen and Steel (29), but it might 
be possible to fix the proof.)

Theorem 41 (28, 29): The TBR distance problem is NP-complete.

Theorem 42 (29): The TBR distance problem can be solved in time 
O(dO(d) + n4).

Open Problem 43: Are the NNI distance or SPR distance problems 
with parameter d (distance) also fixed-parameter tractable?

This section concludes with a distance measure that was intro-
duced in (30). It deviates from the preceding distance measures 
in that it is based on planar embeddings of the two trees involved. 
Given a leaf-labeled tree, a linear ordering on its leaves is called 
suitable if the tree can be embedded into the plane such that 
its leaves are mapped to a straight line in which the given order 
is maintained. Given two orderings on the same label set, their 
crossing number is the number of edge crossings when drawing 
the orderings onto two parallel layers and connecting the corre-
sponding labels by edges, see Fig. 24.3 for an example. We then 
obtain a definition of distance for trees as follows:

Definition 44 (crossing distance): Given two leaf-labeled trees T1 and 
T2 with the same leaf set, their crossing distance is the minimal 
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crossing number between two suitable orderings, one with respect to 
T1 and one with respect to T2.

Note that under this definition trees with different topologies 
may have distance 0.

Definition 45 (crossing distance problem): The input for the crossing 
distance problem consists of two leaf-labeled trees T1 and T2 with the 
same n element leaf set and a distance d. The task is to check whether 
the crossing distance between T1 and T2 is at most d.

The problem is called two-tree crossing minimization by Fernau 
et al. (30). They show that it is NP-complete, but fixed-parameter
tractable with respect to parameter d.

Theorem 46 (30): The crossing distance problem is NP-complete.

Theorem 47 (30): The crossing distance problem can be solved in 
time O (210d · nO (1)).

Unfortunately, due to its high running time, the preceding result 
merely classifies the problem as fixed-parameter tractable.

Open Problem 48: Give a practical fixed-parameter algorithm for com-
puting the crossing distance.

This section studies approaches to combining several phylogenies 
into a single phylogeny. Suppose two researchers have accumu-
lated character data for two partially overlapping sets of taxa and 
both have constructed phylogenies based on their data (see Fig.
24.4 for an example). A natural question to ask is: How can one 
combine these two phylogenies into a single phylogeny?

6. Combining 
Phylogenies
6. Combining 
Phylogenies

Fig. 24.3. Visualization of the crossing number computation for the two phylogenies 
from Fig. 24.2. The two phylogenies are drawn in such a way that the taxa lie on two 
parallel lines and the resulting number of crossings (three in the preceding example) is 
counted when identical taxa in the different phylogenies are connected.
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The first approach is to combine the character-state matrices 
into a supermatrix (as it is called in (31)) and build a phylogeny 
based on this combined primary data or total evidence (as it is 
called in (32) ). Another approach, which has gained momentum 
only in recent years, is to ignore the primary data and build a phy-
logeny based only on the topologies of the two phylogenies. Phylog-
enies that are based on the topology of other phylogenies rather 
than on the underlying character-state data are called supertrees.

An obvious shortcoming of the supertree approach is that 
one expects phylogenies based on total evidence to be more exact 
than phylogenies based only on “second-hand, indirect data” like 
tree topologies. To make matters worse, the supertree approach 
can yield phylogenies that are outright contradictory to the pri-
mary data. Nevertheless, over the last few years numerous papers 
have presented supertrees, motivated by a number of arguments 
that count in favor of the supertree approach:

● The literature contains thousands of phylogenetic studies. 
When combining published phylogenetic trees to obtain 
larger trees, it is often hard or impossible to revisit the under-
lying methods or data; especially when publications date back 
decades.

● In order to increase efficiency, one can try to compute 
phylogenies in a two-phase process. In a first phase, one 
computes small trees based on a phylogenetic method of 
choice. Because the trees are small, one can use time-intensive 
methods. In a second phase, one combines these trees into 
one phylogeny.

Fig. 24.4. (Parts of) two phylogenies for Dinosauria from two different publications ( (58)
and (59) ) and a strict consensus supertree for them.
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● Phylogenetic trees can be computed based on different char-
acter sets and the task is to combine the resulting trees into 
a single supertree. Not all data may be available for all taxa 
of interest, for instance, genomic sequences may be available 
only for a small set of species, making it hard or impossible to 
construct a supermatrix for the primary character data.
The term “supertree” stems from the 1986 paper Consensus

Supertrees: The Synthesis of Rooted Trees Containing Overlapping 
Sets of Labeled Leaves, by Allan Gordon (33). However, the strict 
consensus supertrees of Gordon can only be built for conflict-
free input phylogenies, which are only rarely available. Today, the 
term is also used for trees constructed using methods that handle 
conflicting input phylogenies more gracefully like the matrix rep-
resentation with parsimony (MRP) method, which was proposed 
independently by Baum (34), Doyle (35), and Ragan (36). For 
a more detailed discussion and critical appraisal of the differ-
ent supertree methods, the reader is referred to the monograph 
edited by Bininda-Emonds (37).

For every method, including the strict consensus supertree 
method, the most basic problem is to decide whether a supertree 
exists. For the following definitions, recall that in a binary phyl-
ogeny all nodes have degree one or three.

Definition 49 (strict consensus supertree): A phylogeny T induces a 
phylogeny T ′ if T ′ can be obtained from T by repeatedly deleting 
leaves and contracting edges. A phylogeny T is a strict consensus 
supertree of trees T1, …, Tt if each Ti is induced by T.

Definition 50 (compatible undirected phylogenies problem): The 
input for the compatible undirected phylogenies problem (abbrevi-
ated CUP) are binary phylogenies T1, …, Tt. The task is to decide 
whether there is a binary strict consensus supertree for T1, …, 
Tt.

Already this basic problem turns out to be hard.
Theorem 51 (7): CUP is NP-complete, even if all input trees have four 
leaves.

The corresponding problem for directed trees is solvable in time 
O(n3) for n taxa using an algorithm of Aho et al. (38). Steel 
(39) raised the question of whether the undirected version is 
fixed-parameter tractable with respect to the number t of input 
trees. This parametrization is reasonable since the combination 
of a small number of possibly large trees is a realistic scenario. 
Bryant and Lagergren have recently answered Steel’s question 
positively.

Theorem 52 (40): CUP can be solved in time O (f (t) · nO(1)) for some 
function f.

Unfortunately, both theoretical results on which the fixed-parameter
algorithm for CUP is based are, indeed, theoretical and do not 
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have efficient, practical implementations. No one has yet 
determined an explicit upper bound on the function f mentioned 
in the preceding theorem.

Open Problem 53: Give an efficient and practical parametrized algo-
rithm with explicit running time bounds for CUP for the parameter 
t (number of input trees).

A parametrization of CUP with respect to the maximum size of 
the input trees does not even lead to a “theoretical” fixed-parameter
algorithm by Theorem 51. On the other hand, the problem is 
fixed-parameter tractable with respect to the total number of n of 
input taxa since one can try all possible tree topologies over the 
taxa (see also Theorem 5 and Open Problem 6).

In practice, multiple phylogenies can only rarely be combined 
into a strict consensus supertree. Similar to the case of input matri-
ces that do not permit a perfect phylogeny, one must now find 
ways of resolving the conflicts. Perhaps the simplest approach is 
to delete potentially erroneous input trees until a solution can 
be found. Here the number of deleted trees is a natural problem 
parameter.

Definition 54 (CUP by tree removal problem): The input for the CUP
by tree removal problem is the same as for CUP plus a number k. The 
task is to remove at most k trees from the input such that the remain-
ing trees are an instance of cup.

Theorem 51 implies that the above problem is NP-complete 
for k = 0 even for the extreme case that all input trees are quartet
trees (binary trees with four leaves); so it is unlikely that one will 
make progress on the fixed-parameter tractability of the CUP by 
tree removal problem. However, in one particular case there is, 
at least, still hope:

Open Problem 55: Is the CUP by tree removal problem with para-
meter k fixed-parameter tractable when one allows only quartets as 
input and all of them share a common taxon? (Note that a set of 
quartets that share a common taxon can be thought of as a set of 
directed triplets.)

The situation is more favorable when we turn towards the follow-
ing “dense” version of the problem:

Definition 56  (minimum quartet inconsistency problem): The input 
for the minimum quartet inconsistency problem is a set S of n taxa, a 
set Q containing a quartet tree for each four element subset of S, and 
a number k. The task is to remove k quartets from Q so that the
remaining quartets have a binary supertree T.

Theorem 57 (41): The minimum quartet inconsistency problem can
be solved in time O(4k ·n + n4).

The running time in Theorem 57 is linear in the input size since 
there are O(n4) input quartets for n taxa. The algorithm described in 
(41) also exhibits how search tree algorithms can be complemented 
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by heuristic strategies to prune the search space beyond the running 
time guarantee (for an introduction to search tree algorithms see
Section 3 in Chapter 21 of Volume 2 ).

Combining phylogenies using strict consensus supertrees is 
rarely possible in practice, but always bound to fail when one 
has to combine multiple phylogenies over identical leaf sets—a 
situation that arises in important applications. For example, 
common heuristic phylogeny reconstruction methods that opti-
mize maximum parsimony or likelihood criteria usually produce 
multiple optimal or near-optimal trees. Choosing one of the 
near-optimal trees is arbitrary and a “consensus” of the trees 
may be preferable. Ad hoc methods for finding a consensus like 
the majority consensus tree method work in polynomial time—
for instance, the randomized algorithm presented in (42) runs 
in linear time—but they may yield poorly resolved output trees. 
The following discusses a more sophisticated version of the con-
sensus problem.

The rest of this section considers only directed phylogenies, 
which no longer need to be binary.

Definition 58 (maximum agreement subtree problem): The input for 
the maximum agreement subtree problem is a set S of n taxa, directed 
input trees T1, …, Tt over S, and a number k. The task is to find a 
subset S´ ⊆ S of size n – k such that there is a directed phylogeny T
over S´ such that each of T1, …, Tt induces T.

Perhaps not surprisingly, this problem is NP-complete. The fol-
lowing theorem shows that the situation is even worse:

Theorem 59 (43): The maximum agreement subtree problem is NP-
complete even for t = 3.

Concerning the maximum degree d of nodes in the trees, the fol-
lowing result is known, which is not a fixed-parameter result since 
the parameter d is in the exponent.

Theorem 60 (44): The maximum agreement subtree problem can be 
solved in time O(nd + tn3).

For a more complete overview on agreement subtrees, refer to 
(45). Here, it is of particular interest that the maximum agree-
ment subtree problem is fixed-parameter tractable with respect to 
parameter k (number of removed taxa):

Theorem 61 (45): The maximum agreement subtree problem can be 
solved in time O(2.18k + tn3) and also in time O(3k · tn).

The result can be extended to the closely related maximum com-
patibility tree problem (45). For input trees with non-identical leaf
sets, Berry and Nicolas show that the resulting maximum agree-
ment supertree problem is unlikely to be fixed-parameter trac-
table as, once more, unlikely complexity class collapses would 
result.
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Two applications of phylogenetics are presented that are not 
related to taxonomy. In these applications one is not ultimately 
interested in finding a solution phylogeny. Rather, a phylogeny 
or the phylogenetic model is used to determine something seem-
ingly unrelated. In the first application phylogenies help in the 
prediction of regulatory elements of the genome, in the second 
application perfect phylogenies are a measure of the quality of 
haplotype phase predictions.

Phylogenetic footprinting, first proposed by Tagle et al. (46), is 
a method for predicting which regions of the genome are regula-
tory (involved in the regulatory process). The basic idea relies on 
the following observation: Suppose one has identified a gene and 
it is expected that there are regulatory elements before and after 
the gene, but their exact location is unknown. Regulatory ele-
ments will not change (greatly) as mutations occur throughout 
the genome, because if a non-regulatory part mutates, this does 
not change the chances of survival, but when a mutation occurs 
inside a gene or a regulatory area, then the individual may not 
survive. Thus, a possible approach to predicting regulatory ele-
ments is to do a sequence alignment of multiple genomic data 
and to search for parts of the genome that stay (relatively) stable 
over evolutionary time spans.

In phylogenetic footprinting one attempts to improve the 
prediction by using a phylogenetic tree to judge how important 
a mutation is. If one sees only, say, three different sequences in a 
candidate regulatory region, but the sequences of closely related 
species vary strongly among the three sequences, it is less likely 
that the region is regulatory than if related species all share the 
same sequence inside the regulatory region.

The preceding ideas lead to a problem called substring parsimony 
problem. To state it formally we first define the parsimony score.

Definition 62 (parsimony score): Recall the notion of the length of a 
phylogenetic tree from Definition 13. Given a partially labeled phy-
logenetic tree T, the parsimony score of the tree is the minimal length 
of a label completion of T.

Definition 63 (substring parsimony problem): The input for the sub-
string parsimony problem is a partially labeled phylogeny T in which 
only the leaves are labeled and two integers l and s. The task is to 
decide whether each leaf label can be replaced by a substring of length 
l such that the parsimony score of the resulting tree is at most s.

The substrings of length l that are chosen from each leaf are the 
predicted regulatory elements. Note that in the substring parsi-
mony problem the phylogeny T is fixed and part of the input. 
The idea is that it is typically already available in the literature 
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or can be computed using one of the methods presented in the 
previous sections.

Blanchette, Schwikowski, and Tompa prove the following 
theorem:

Theorem 64 (47): The substring parsimony problem can be solved in 
time O( (r 2l + m)·ln).

The theorem shows that substring parsimony is fixed-parameter 
tractable with respect to the parameter pair (r,l ). The parameter 
r is 4 in practice, but even for this low value the dominating part 
of the running time is r 2l = 16l, which grows too quickly. There-
fore, Blanchette et al. develop a number of improvements for the 
original algorithm and lower the dominating term first to r l and 
even further for typical inputs.

The haplotyping problem arises when one searches for genetic vari-
ations of diploid organisms like humans. An example of important 
genetic variations are single nucleotide polymorphisms (SNPs), which 
are variations across the population of a single nucleotide in the 
genome. Knowing which nucleobase is present can be important 
for the prediction of drug response or susceptibility to diseases. 
The sequence of nucleobases at SNP positions on a chromosome 
is called a haplotype. Being diploid organisms, humans have two 
(possibly identical) haplotypes for every set of positions.

Existing methods that determine the state of a specific SNP 
for a person quickly and inexpensively (e.g., in a hospital dur-
ing a study on drug response), are based on using two primers 
for each SNP, one for each of the two possible bases (SNP sites 
with more than two possible bases are very rare). By detecting 
which primer(s) react, one can determine whether an SNP site 
is heterozygous (there are different bases on the two copies of 
chromosomes) or homozygous (both chromosomes agree) and 
which base(s) are present. This information is called the genotype
of the sites under consideration.

For heterozygous SNP sites the genotype does not tell us 
which base belongs on which chromosome. In other words, it 
lacks the often crucial information which base belongs to which 
haplotype. The haplotyping problem is the problem of computa-
tionally predicting this information based on the observed geno-
types alone.

To make predictions, one must make assumptions about which 
haplotypes are more likely than others. For example, one could 
assume that haplotypes change only rarely (they certainly do not 
change within a few generations). Then if the genotypes of hun-
dreds of persons of the same ethnic group are given, one can try to 
find a minimal set of haplotypes such that every observed genotype 
can be explained by assuming that the person has two haplotypes 
from the small set. Many statistical methods for haplotype phase 
determination are based on this parsimony assumption.

7.2. Prediction 
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In a seminal paper, Gusfield (8) proposed a different idea. 
Gusfield argues that haplotypes evolve according to the evolu-
tionary model underlying perfect phylogenies: Mutations occur 
only rarely and there are no back-mutations. Therefore, one 
should look for a set of haplotypes explaining the genotypes that 
forms a perfect phylogeny (the taxa being the haplotypes, the 
SNP sites being the characters, and the nucleobases being the 
states). The following definitions formalize the problem.

Definition 65 (haplotype, genotype): A haplotype is a state vector. The 
set Σi of permissible states at position i is typically (but need not be) 
a two element subset of {A,C,G,T}. A genotype is a sequence of sets, 
where the ith set is a subset of size one or two of Σi. Two haplotypes 
explain a genotype if the ith subset of the genotype contains exactly 
the two states of the ith positions of the two haplotypes.

Definition 66 (PP haplotyping problem): The input for the PP hap-
lotyping problem is a set of genotypes. The task is to decide whether 
there exists a set of haplotypes forming a perfect phylogeny such that 
each genotype can be explained by two haplotypes in the set.

The PP haplotyping problem is at least as hard as the PP problem 
since we can reduce PP to the PP haplotyping problem by turn-
ing each taxon into a “genotype”’ whose ith set contains only 
the ith state of the taxon. Then every set of “haplotypes” that 
explains the “genotypes” contains the original set of taxa. This 
shows that the PP haplotyping problem is NP-complete.

The question arises which fixed-parameter results on the PP 
problem carry over to the more general haplotyping problem. Not
too much is known on this since research has almost entirely 
focused on the case r = 2. For this, the following remarkable 
result is known:

Theorem 67 (48): For r = 2, the PP haplotyping problem can be solved 
in time O(mn).

Open Problem 68: How difficult is the PP haplotyping problem for r > 2?

In practice, the perfect phylogeny haplotyping problem is, unfor-
tunately, not quite the problem that one wants to solve. Genotype 
data that is obtained via the laboratory process sketched earlier 
will always contain a certain amount of missing data caused by 
impurities or incorrect handling. Such missing data are commonly 
represented by question mark entries in the genotype input.

Definition 69 (incomplete PP haplotyping problem): The input for the 
incomplete PP haplotyping problem is a set of genotypes that may contain 
question marks for certain characters. The task is to decide whether the 
question mark entries can be completed in such a way that the result-
ing set of genotypes is an instance of the PP haplotyping problem.

The missing entries add yet another level of complexity. This 
new problem, which is of great practical interest, is (presumably) 
no longer fixed-parameter tractable with respect to the central 
parameter r. Indeed, the problem is difficult for all values of r as 
the following theorem shows.
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Theorem 70 (49, 50): For every r  >= 2, the incomplete PP haplotyping 
problem is NP-complete.

Because of the preceding result, already for r  = 2 one has to look 
for some new parametrizations if one wishes to find a fixed-
parameter haplotyping algorithm that can deal with missing data. 
An obvious parametrization is to consider the total number q of 
question mark entries in the data.

Theorem 71: For r  = 2,  the incomplete PP haplotyping problem can
be solved in time O(3q ·mn).

Open Problem 72: How difficult is the incomplete PP haplotyping 
problem for r  > 2?

Unfortunately, the total number q of question marks typically is 
not small in practice. Because of this, a different parameter was 
studied by Gramm et al. in (49), namely the maximal number 
c of question mark entries per character. An analysis of pub-
licly available genotype data shows that, typically, this param-
eter is reasonably small. The second key idea of the paper is to 
assume that phylogenies are directed and that they are paths
(no branching occurs, except possibly at the root). At first sight 
it may seem strange to consider path phylogenies, but in the 
human genome for around 75% of the genomic loci one finds 
genotypes where all SNP sites are heterozygous (51). The only 
phylogenies that explain such highly heterozygous genotypes 
are path phylogenies.

Theorem 73 (49): For r  = 2, the incomplete PP path haplotyping prob-
lem can be solved in time O (3O(c2·6c·c!)·n2m3).

Open Problem 74: How difficult is the incomplete PP path haplotyp-
ing problem for r  > 2?

Open Problem 75: Find a fixed-parameter algorithm for the incom-
plete PP haplotyping problem for the parameter c (maximum number 
of question mark entries per column).

Fixed-parameter algorithms are a valuable tool in phylogenet-
ics. Phylogenetics abounds in computational problems, many 
of which are NP-complete, and one cannot expect that efficient 
exact algorithms will be available for them in the near future, 
if ever. However, many of the computational problems can be 
solved efficiently and exactly if some of the natural input param-
eters are reasonably small.

In addition to the concrete open problems pointed out 
throughout this survey, we want to sketch two broader, less con-
crete prospective directions of future research.

8. Conclusion8. Conclusion
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The results presented in this survey refer to problem formula-
tions for discrete input objects and discrete optimization criteria. 
In computational biology there is a general lack of and a need for 
fixed-parameter results addressing non-discrete computational 
problems arising in stochastic analyses. Examples include proba-
bilistic sequence analysis (52) and maximum likelihood analysis.

A concrete stochastic computational problem is the follow-
ing: The input for the maximum likelihood phylogeny problem is a 
character-state matrix and transition probabilities for the transitions 
between character states. The task is to find a phylogeny with the 
input taxa at the leaves that has a maximal “likelihood” among all 
such phylogenies. Intuitively, the likelihood of a phylogeny is the 
sum of the likelihoods that the character states at the leaves were 
generated given the labeling of the inner nodes. Computing this 
likelihood is a non-trivial task itself (see for instance (52–54)). Only 
recently it has been shown that the maximum likelihood phylogeny 
problem is NP-hard (53, 54). It remains open to address this and 
related problems with appropriate fixed-parameter algorithms.

The basic assumption made in this survey, namely that hypoth-
eses on evolutionary history can be represented by trees, is often 
inappropriate. Phylogenetic trees cannot explain—among other 
biological effects—the recombination effect, in which a genomic 
sequence is combined from two source sequences by taking a 
prefix from the first and a suffix from the second sequence. The 
resulting evolutionary history can no longer be represented by a 
tree; rather, one must use phylogenetic networks.

Fixed-parameter algorithms might be particularly useful in the 
study of these networks since these are not arbitrary, but “tree-like.” 
They deviate from trees only by a small amount and we propose 
this extent of deviation (however measured) as a natural problem 
parameter. It is known (see Chapter 21 of Volume 2 for an intro-
duction) that fixed-parameter algorithms can often be obtained 
for such tree-like graphs. Many of the problems addressed in this 
survey can be extended to phylogenetic networks, but almost all of 
the resulting problems are open.
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